Dynamic Network Analysis 4. Exploring the 5th dimension

Highway at night. Source: https://pxhere.com/en/photo/1192661

John Terrell

MY TWIN SISTER AND I were born on 15 August 1942 a month or so premature. However faulty our timing, much later we learned we were part of an alleged birth spike in America back then. We were “Pearl Harbor babies” conceived in the aftermath of the Japanese attack on the United States on December 7th—the day that would live in infamy.

However true or false this categorization, as time goes by the evident reality of time becomes increasingly hard personally for me to ignore. But wait. What exactly is time ? Sure I may be getting older, but does time have anything to do with it?

It is conventional wisdom that whatever it is, time is more than just one thing after another, moment to moment, day to day, year to year, and so on. In fact, we often speak of time as something within which, or over which, we pass the time, as the saying goes.

All this, however, begs the issue. Regardless how we talk about time, what is it we are trying to talk about? More to the point, what does time have to do with exploring something I want to suggest we should call the 5th dimension of reality?

Wayne, Wendy, and Wally

I suspect like most of us, you may agree there are three primary dimensions in the universe, and in English they are called length, width, and depth. If so, I beg to disagree with you at least about one thing. I wish they were instead called Wayne, Wendy, and Wallace (Wally).

Why? Because then it might be more obvious that this famous 3D trio is just something we humans have made up to satisfy our own needs. These dimensions are not really “out there” waiting for us to measure them.

https://www.flickr.com/photos/tom-margie/1534936923/in/photostream/

If you don’t care for my choice of names, how about Larry, Curly, and Moe? These names don’t work for me. My twin and I have always hated The Three Stooges. Yet there is no disputing taste. Go for them if they strike your pleasure centers.

What I am trying to get at whatever words are favored is this. When we say things have three dimensions, what we are really saying is that we can pinpoint something  in space by taking three standard (usually orthogonal)  measurements. This doesn’t necessarily mean what we are measuring is unreal. It just means what we are  measuring doesn’t have dimensions. We give it dimensions.

This may sound like gobbledygook, but stay with me. Knowing this means things don’t just have three dimensions. They can have as many as we want to give them. Weight, for instance. Color. Texture. Don’t be shy. Use your imagination.

Where then does time fit in?

No doubt it, taking measurements such as Wayne, Wendy, and Wally—also known as length, width, and depth—can be extremely useful if you are building a house, or trying to get something into the back of your car. But they are still only measurements. They are arbitrary. Made up. We can take them, but we can’t find them. They aren’t a part of nature. They aren’t a part of the universe. They are just one of the ways we try to grapple with the world and the universe we live in.

By many accounts, time is the 4th dimension of reality. This may be so, but isn’t time also something you can run out of? And in contrast, isn’t it true  nobody in their right mind would ever say they are worried or depressed about running out of any of the other three dimensions that time is traditionally associated with—namely length, width, and depth?

So is time a different kind of dimension? Maybe one that is real rather than just convenient or arbitrary?

But isn’t time real?

Commonsense may tell us that time really is something out there to be measured. Yet in truth and also in practice, time isn’t a thing but rather a sequential relationship: a series of events related to one another by the seemingly elementary fact of following after one another.

Hellerick, based on earlier image by CIA with many modifications by other contributors, TimeZonesBoy (Based on File:CIA WorldFactBook Time Zones.svg) [Public domain], via Wikimedia Commons
Time is a centerpiece of Albert Einstein’s theory of relativity. It is reported that he was asked so often to explain his abstruse theory in terms mere mortals could understand that he came up with a jovial illustration: “When you sit with a nice girl for two hours you think it’s only a minute, but when you sit on a hot stove for a minute you think it’s two hours. That’s relativity.”

Ever since Einstein published his special (1905) and general (1915-1916) theories, the conventional idea—popularly credited to Sir Isaac Newton—that time is something that exists both apart from our awareness of it, and also marches to its own drummer has been banished from serious scientific consideration.

But what then is time and what does it have to do with the 5th dimension of reality?

Four dimensional space-time

Once Einstein’s view of time is accepted, time joins length, width, and depth as one of the dimensions of reality that are arbitrary rather than “out there” and absolute. In other words, we can take time but we can’t find time, so to speak. Time is simply one of the ways in which we try to pinpoint something not just in space but in space-time.

In their popular book on the nature of reality The Grand Design, the late Stephen Hawking and his colleague Leonard Mlodinow explore how we as mere human beings are compelled to see things from the limited perspective of our species, however grand we may believe ourselves to be. More specifically, “the measurement of time taken, like the measurement of . . . distance covered, depends on the observer doing the measuring” (page 97).

Said another way, it is not possible to determine for any given event exactly when it happens since different observers will have their own take on time depending on whether they are moving together with one another through space-time, or differently.

https://commons.wikimedia.org/wiki/File:Spacetime_lattice_analogy.svg

If you have read this book by Hawking and Mlodinow, or some other guide to Einstein’s ideas about relativity, you know that his general theory also tells us that space-time is not flat, but is curved and distorted by the mass and energy within it. However, as fascinating as this topic may be, it is time to move on to talk about what I propose should be our shared understanding of what I want to call the 5th dimension of reality.

How many dimension of reality are there?

I have already remarked that since they are arbitrary and not actually a part of nature and the universe, we can have as many dimensions to work with as we have need of. Physicists and mathematicians would apparently phrase this observation in this fashion: if it helps you understand something, then it’s OK to assume that what you are interested in is located within an N-dimensional space. The “N” here meaning the number of dimensions you want to build your ideas around.

There are those today working in theoretical physics who say the number of dimensions needed to understand the fundamental workings of the universe may be as high as 10, possibly even 11. In his well-received popular book Reality Is Not What It Seems (2014, English transl. 2017), the physicist Carlo Rovelli has a lot to tell us about how many dimensions we need to keep in mind while he is surveying what scientists are currently proposing about quantum gravity, that esoteric side of theoretical physics whose practitioners are struggling to combine quantum mechanics with Einstein’s general theory of relativity.

Not all of Rovelli’s peers see eye to eye with him about what he says in this book. In a snarky review in The New York Times in 2017,  Lisa Randall, who is a professor of theoretical particle physics at Harvard University, caustically suggests he is romanticizing physics. (I guess it is possible for some people to be swept off their feet when it comes to quantum gravity.) She also frets that “when deceptively fluid science writing permits misleading interpretations to seep in, I fear that the floodgates open to more dangerous misinformation.”

She may well be on to something when she says what Rovelli tells us isn’t always right, and maybe he does at times misleadingly give us his own ideas as established facts. What strikes me as worth noting, however, is what Randall doesn’t like about what Rovelli says about the lowly electron.

She makes much of the fact that when explaining quantum mechanics, Rovelli says: “Electrons don’t always exist. They exist when they interact.” She says this claim is way off the mark:

Stocks may not achieve a precise value until they are traded, but that doesn’t mean we can’t approximate their worth until they change hands. Similarly electrons might not have definite properties, but they do exist. It’s true that the electron doesn’t exist as a classical object with definite position until the position is measured. But something was there — which physicists use a wave function to describe.

Exploring the 5th dimension of reality

Fools rush in where angels fear to tread. I have absolutely no idea whether Rovelli is or isn’t right about the surprisingly controversial electron. I am not even sure I understand Randall’s objection. On the other hand, I am pretty sure she (and probably he) wouldn’t agree with me about what is the 5th dimension of reality. 

Physicists evidently think they have this one more or less already in the bag.  In my defense, I am going to reiterate that we can have as many dimensions as we need, and I need a fifth dimension to be able to write about dynamic network analysis. Let me now tell you why. 

Randall is right. Rovelli does say in this book  that electrons don’t always exist. But he says a lot more than just that. While telling us about Werner Heisenberg and the mysterious “quantum leaps” that appear to underlie the structure of atomic spectra, he asks rhetorically: “What if the electron could be something that only manifests itself when it interacts, when it collides with something else; and that between one interaction and another, it had no precise position?”

Rovelli then tells us that the hardest key to quantum mechanics is this one: the relational aspect of things (pages 119–120). Because I think his observation is so important, I am going to repeat in full the quotation from his book that Randall (above) has found so objectionable:

Electrons don’t always exist. They exist when they interact. They materialize in a place when they collide with something else. The “quantum leaps” from one orbit to another constitute their way of being real: an electron is a combination of leaps from one interaction to another.

Why do I find this observation so relevant to what I want to talk about in this series of posts on dynamic network analysis and the 5th dimension of reality? For me, the key elements are these:

      • 1.  Dynamic network analysis assumes that things, people, and places can be physically located in space and time.
      • 2.  The focus of analysis is on the characteristics of people (and their behavior), places, and events in space and time.
      • 3.  The premise of dynamic network analysis is that the characteristics of things, people, and places are circumstantial and contingent on the interactions—the relationships—among the elements being studied (I like to call them the ingredients of the investigation).

As I will be exploring in the next post in this series, another and more familiar name for this 5th dimension of reality is what Charles Darwin called “descent with modification.” Also known as evolution, although not necessarily what Darwin himself meant by this familiar and controversial word.

what on earth is this?

https://apod.nasa.gov/apod/ap040716.html

NASA’s explanation for the stellar phenomenon shown above: “Blown by the wind from a star, this tantalizing, ghostly apparition is cataloged as NGC 7635, but known simply as The Bubble Nebula. Astronomer Ken Crawford’s striking view combines a long exposure through a hydrogen alpha filter with color images to reveal the intricate details of this cosmic bubble and its environment. Although it looks delicate, the 10 light-year diameter bubble offers evidence of violent processes at work. Seen here above and left of the Bubble’s center is a bright hot star embedded in telltale blue hues characteristic of dust reflected starlight. A fierce stellar wind and intense radiation from the star, which likely has a mass 10 to 20 times that of the Sun, has blasted out the structure of glowing gas against denser material in a surrounding molecular cloud. The intriguing Bubble Nebula lies a mere 11,000 light-years away toward the boastful constellation Cassiopeia.”

This is Part 4 of a continuing series of posts on dynamic network analysis. Next up: 5. What’s a relationship?
© 2018 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Dynamic Network Analysis 3. Connecting the dots

1691 Sanson Map of the World on Hemisphere Projection. Source: http://www.geographicus.com/mm5/cartographers/sanson.txt [Public domain], via Wikimedia Commons

John Terrell

CATEGORICAL THINKING, which I wrote about in the first two posts in this series, may at times be too pat for our own good, but this pragmatic (although potentially knee-jerk) way of dealing with things, people, and events is rarely based solely on nonsense.

Old-fashioned library card catalog https://www.flickr.com/photos/mamsy/ [CC BY 2.0, via Wikimedia Commons
Why not? Because the world is not an entirely unpredictable place. What happens to us, good or bad, is seldom purely random or plain crazy.  Life actually does have patterns that can be real enough, although they can also be far from  clear-cut and hard to see. Even so, patterns can be categorized. Not always successfully (just ask any weather forecaster), but that doesn’t mean we shouldn’t try to do so.

But this is enough about categorical thinking for now. I want to move on and write instead about what I have previously referred to as relational thinking.

Relational thinking

The National Council of Teachers of Mathematics defines this way of thinking as the “mindful application of place value and the properties of number, operations, and equality in solving mathematics problems.” If this confuses you as much as it does me, note this organization adds: “A student with a disposition toward relational thinking has a habit of thinking before acting.”

This seems like an uncommonly low bar. Certainly not the definition I have in mind. Nature‘s online magazine Science of Learning offers an alternative: “At the core of all human learning and  performance  . . .  is the foundational ability to perceive patterns that thread through all of nature, including human nature.”

This isn’t quite it, either. In fact, to me this sounds more like a definition of categorical thinking. So let me give you my own take on what pairing these two words together means:

Categorical thinking assumes things exist apart from one another, and may then become connected with one another.  

Relational thinking assumes instead things exist because they are connected.

If my definition sounds too mystical to you, let me offer you several examples of what I mean.

One-sided relationships

It seems likely that no relationship is solely one-sided if looked at closely enough. While granting this likelihood, there is no doubt that relationships can be so out of balance that it is not just a technicality that one side is more influential than the other. Critically, the character and perhaps the very existence of one side in such an imbalanced relationship may depend, maybe entirely, on the relationship it has with the other side.

A classic example of such a one-sided connection is the relationship between the Sun in our solar system and all the other planets (and then some) revolving around it, including Planet Earth.

Even without venturing into the exotic realm of modern cosmological theories about quantum gravity, it is obvious enough nowadays except perhaps to those who believe the Earth truly is flat that if it were not for the gravitational relationship between the planets and our Sun, the Earth would not exist at all and neither would we. Our reliance on the Sun is that one-sided and decisive. There would also be no life at all on our planet without the Sun serving as life’s ultimate source of energy, however otherworldly such a statement may sound.

Technical note: In formal network analysis, a relationship between two things (the two nodes or vertices in the relationship) is said to be dyadic (two-sided). When both are taken together, they are called a dyad. Furthermore, such two-party connections can be either undirected (more or less balanced or symmetrical from the point of view of each), or they can be directed (each party has a different take on the relationship). From this perspective, the relationship between the Earth and the Sun is a directed dyadic relationship, and it is a relationship that is decidedly one-sided.

Photo via Good Free Photos
Two-sided relationshps

It has been said that human beings have an innate sense of fairness and an ingrained willingness to do something for others when they are reasonably confident that a favor, whatever it is, will be returned, if not in kind, at least in some other way having equal value.

This judgment of our willingness to engage with others in two-sided relationships is far too cynical. Available evidence suggests instead that most of us are basically predisposed to be kind, collaborative, and helpful to others. That’s how we have evolved as a social species.

Moreover, humans as a rule are not only ready, willing, and able to forge and maintain relationships with others. We are also remarkably skilled at coming up with playful excuses to do so.

Although jogging, bicycling, and other forms of exercise, for instance, can be done easily enough as solitary tasks, people often find ways of turning even such seemingly self-centered healthy activities into broadly social occasions.

Although a more sedentary activity than a physically healthful one, this observation holds true also for online computer gaming, which is now a major leisure-time social activity for millions around the globe.

Technical note: A racket sport such as tennis is an example of an undirected dyadic relationship (accepting, of course, that only one of the players can win). Yet tennis is also a spectator sport, and as such, creates a directed dyadic relationship between sports fans and players.

https://es.wikipedia.org/wiki/Archivo:Thomaz_Bellucci_perde_para_o_espanhol_Rafael_Nadal_(28655795630).jpg
Many-sided relationships

It is obvious enough that spectator sports such as tennis or baseball involve more than just simple dyadic relationships between players and spectators. The social complexity of team sports is even more apparent for sports such as soccer and football that call for the coordination of players both within and between the two opposing teams on the field.

A friend in need, 1903. Public domain, via Wikimedia Commons

Side note: There seem to be few team sports that call for more than two teams on the playing field at the same time—maybe they should be called “dyadic sports”—although a few examples do come to mind if you are willing to bend the definition of what is a sport: many kinds of card games, many types of board games, some varieties of billiards, some forms of bicycle racing, etc. 

But the many-sided complexity of most human relationships isn’t just obvious while watching  players interact with one another on a playing field. The general complexity of human relationships is more than apparent also among the fans watching the game being played right there before their eyes. Indeed, in the case of some sports, it could  be argued that “most of the action” is actually in the bleachers, not down on field. (You may be able to tell I don’t like baseball, and I am not too fond of football, either.)

Tim Beckham, catcher John Hicks, umpire Roberto Ortiz in a 2017 game [Keith Allison from Hanover, MD, USA (Tim Beckham) CC BY-SA 2.0, via Wikimedia Commons
How can we tackle the complexity of human relationships?

Classic definitions of social network analysis as a way of coming to grips with the complexity of human social relationships commonly read like this one from John Scott’s highly successful book Social Network Analysis: A Handbook: “social network analysis is an orientation towards the social world that inheres in a particular set of methods. It is not a specific body of formal or substantive theory” (page 37, 2nd ed., Sage Publications, 2000).

I find such a view naive, however well-intentioned. It is quite impossible to isolate methods from theories and then claim to be doing good science. This is an observation I will explore further in the next posting in this series.

This is Part 3 of a continuing series of posts on dynamic network analysis. Next up: 4. Exploring the 5th dimension.

 

© 2018 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

FACEBOOK Redeemed? Co-curation of visual heritage

On Teop Island, 1969

John Terrell

SOCIAL MEDIA IN GENERAL, and FACEBOOK in particular, have taken a lot of heat lately for a range of social and political misdeeds centering on, but not limited to, the misappropriation of the personal data of 87 million people.

I generally believe the seemingly trite wisdom that when given a lemon, you should make lemonade.

Teop Island from the Bougainville mainland.

Back in 1969—or almost 50 years ago—while I was doing my  dissertation field research in Pacific archaeology on Bougainville Island in the North Solomons, I lived for a number of months on beautiful little Teop Island just off the northeast corner of Bougainville, one of the largest islands in the Southwest Pacific.

Buin, 1970

Several months ago I discovered that lots of people from Teop are now on FACEBOOK. It turns out some people there even remember me and where the house was I lived in (it is no longer there). Some may remember, too, the clan name I was given back then.

 

I started “friending” folks there, and vice versa. Then I began posting my old pictures of people and events on the island to local applause.

Several of us at Field Museum in Chicago are now working remotely via email and FACEBOOK with Geoffrey Purupuru and others from Teop to create a forum at our website PacificAnthropology.org where all of my photos from Teop back in 1969 can be seen, commented on, and freely shared with others.

An unexpected way of “returning” that would only be possible today. Thanks be to FACEBOOK.

But more to the point I want to end with here, we see this collaborative venture as further demonstration of how museums today can form partnerships with communities beyond their walls to celebrate world cultural heritage, And share old memories, too.

Text updated: 6.26.2018

A sample of the photos soon to be available on the Internet.
Canoe-making on Teop Island, Bougainville, 1969
Sampson Purupuru, Teop 1969
Vasipuana ceremony, April 1969
Vasipuana ceremony, April 1969

Dynamic Network Analysis 2. Relativity

Lined Up Harvest Fruit Source: https://www.maxpixel.net/Lined-Up-Harvest-Fruit-Goldparmaene-Apple-Series-1675775

John Terrell

IN THE INAUGURAL POSTING in this series, I made note of the fact that history  shows us time and again that as a species we have decided strengths and obvious weaknesses.

Why it’s good to be human

On the plus side, our kind of animal is outstanding at reshaping and rebuilding the world around us to make the challenges we face as individuals and as a species as humdrum, predictable, and hence as manageable as possible.

Poets, playwrights, philosophers, and scientists may debate the particulars of human motives and intentions, but there is no denying one of the reasons we spend so much time and effort at redoing the conditions under which we live out our days on earth. The more predictable a situation or event is, the easier it is for our brain to cope with it. And if need be, respond more or less appropriately.

Spice Bazaar, Istanbul. Personal photograph

I also argued in the previous post that to avoid becoming overwhelmed by what our body’s senses—classically said to be five in number—are telling us about the state of things and events both inside and outside our skin, our brain ignores much of what it is being told. Instead it mostly relies on the pragmatic strategy of simplifying what it is hearing, both literally and figuratively, by mentally putting things, people, and experiences into separate and seemingly distinct mind boxes—into different categories.

https://www.publicdomainpictures.net/en/view-image.php?image=194409&picture=the-three-bears

However, there is a fine line between paying too much attention to what our senses are telling us, and too little. (I like to call this the Goldilocks Line after the 19th century children’s story). Failing to pay sufficient attention to what’s happening inside or outside our body can be disastrous, as anyone who has survived the experience can tell us about why they shouldn’t have been texting while driving.

Why it’s bad to be human

As my mother so often liked to say, things can be both good and bad at the same time. However pragmatic and unintentionally self-centered we are as individuals for understandable evolutionary and psychological reasons, the dark side of our human ways cannot be denied.

I wasn’t being cynical in the previous post, therefore, when I remarked that truth may not be as appealing and important—that is, as useful—to us as human beings as the immediate and pragmatic benefits of things and events (and people, too) that are easy, convenient, and predictable.

However, taking the easy way out, the easy answer, the easy job, and so forth can be costly down the road—sometimes sooner rather than later. Doing so can make it difficult for us to notice and pay enough attention to how things, people, and experiences are linked, intertwined, and interrelated. Said more formally, what I called previously “categorical thinking” can lead to “categorical mistakes.”

The power of words

According to more than just a few of us, life’s big question is Why am I here? Others instead see How come I am here? as the mystery to be solved. Conventionally, people turn to theologians, philosophers, psychologists, and their best friends when they are seeking answers to the first question. The second one falls more in the thoughtful arena of pediatricians, scientists, cosmologists, mystics, and priests.

This division of labor, however, is not absolute, and is certainly not as categorical as such a divide implies.  One common thread crossing between these two realms of expertise is the belief or assumption—sometimes up front, sometimes only lurking in the background—that words are both powerful and are usually grounded in reality except, of course, when someone is “making things up” that they know are untrue.

The belief that words can be both truthful and powerful—that by naming things we are not just “putting into words” something already “out there” in the world, but can create something new as if “out of nothing”—is deeply rooted in the antiquity of our species. A classic example would be invoking the word abracadabra during a magic show to lend apparent substance to some clever illusion. But the roots of seeing words as powerfully creative run deeper than this trivial example.

The Almighty. Genesis cap 1 v 16. De Vos [By Phillip Medhurst [CC BY-SA 3.0, from Wikimedia Commons
For instance, consider the opening words of the Book of Genesis in the Hebrew Bible and Old Testament:

IN THE BEGINNING God created the heaven and the earth.
2  And the earth was without form, and void; and darkness was upon the face of the deep. And the Spirit of God moved upon the face of the waters.
3  And God said, Let there be light: and there was light.
4  And God saw the light, that it was good: and God divided the light from the darkness.
5  And God called the light Day, and the darkness he called Night. And the evening and the morning were the first day.
Relational thinking

In my first post I said that I am writing this series about dynamic network analysis because I want to explore with you how a different way of thinking about the world and our place in it can make it easier for us to see and make something out of how widely and how often critically things, people, and events are not separate and distinct in neat categorical ways, but instead are interwoven into relationships that make the whole totality of them, as the saying goes, bigger than the sum of the parts. Since what I want to write about, however, is complicated, I need to proceed step by step.

The next step in this second post is a brief quiz I’d like you to take before we move on to take a closer look in Post #3 at what is called network analysis.

Quiz: How good are you at thinking outside the category?

Please take a piece of printer paper and draw a line down the middle from top to bottom. Near the top of the left-hand column, write the word categorical. Do the same for the right column, except make the word relational. Then write in items under these two headings matching those shown here. Note that the last two rows are blank. In a moment I will be asking what you would add in these two bottom rows resonating with the rows above them.

Here’s the question I want to ask: What makes the items in the right-hand column different from those in the left-hand column? Yes, it is OK to use Google if some of the items seem obscure. And yes, this is a categorical question for sure.

The answers I am looking for

There are many ways to talk about the items in the left-hand column.  #1-2 are often viewed nowadays as wasteful single-use items that pollute the environment; #3 is a famous writer who rejected the virtues of altruism, praised individual rights, and is seen by many as a prophet of selfishness; #4 is an organization dedicated to protecting the rights of individual gun owners; #5 is the day each year when a given individual was born; #6 refers to the belief that all things can be boiled down to singular, individual particles called atoms.

In contrast, paper bags and paper straws are being promoted today as more environmentally friendly than their counterparts in the left column. #3 could be described as the high priest of the relativity rather than the individuality of things in the universe. Without trying to pin them down, the remaining three items are similarly all about things, events, and species that are enmeshed with one another.

Now here’s your job. What would you write in the blank rows at the end of this table? For instance, I myself would be tempted to write in one of these rows the card game solitaire vs. the team sport of boat racing.

By National Library of Ireland on The Commons (Waterford Boat Club) [No restrictions], via Wikimedia Commons
What’s the point I am trying to make?

In the first post in this series, I observed that for entirely understandable reasons each of us is by nature self-centered. Saying this, however, does not have to mean we are also inherently selfish despite the fact that jumping to such a conclusion is unfortunately fairly commonplace even in scholarly circles.  

As we will be exploring in this series, Ayn Rand and others both before and since have been misguided to believe otherwise. The continuing popularity of Rand’s ideas only shows that words can be powerful at least in the limited yet dangerous sense that they can be used to persuade us about what’s real and what’s unreal in the world of yesterday, today, and tomorrow without actual proof.

This is precisely why we need ways of getting outside our heads and dealing directly with the world that force us to “think outside the category.” Why? Because we need ways to confront our hasty impressions, deep-seated desires, wishes, and wants so that we can avoid errors in judgment, however innocent, that tragically can result in the desecration of the world we live in—and if we are not careful, our own extinction as a species.   

Sea-fog-plastic-sad-geology-waste-1115089-pxhere.com_-1.jpg
This is Part 2 of a continuing series of posts on dynamic network analysis. Next up: 3. Connecting the dots.

 

© 2018 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Dynamic Network Analysis 1. Human nature

Highway at night. Source: https://www.maxpixel.net/Long-Exposure-Night-Highway-Motion-Traffic-Light-216090

John Terrell

HUMAN BEINGS ARE BY NATURE highly social animals. Despite claims both popular and scientific, we also are not inherently selfish creatures. Yet we often seem self-centered. Why? Short answer: because we are looking out at the world from inside our skulls.

As my mother used to say, this is both good and bad. Let me explain briefly by offering you a few elementary observations about being human.

Your pragmatic brain

A fully functioning human brain is a remarkable compromise. Your senses are constantly feeding you input—lots of it—about what’s happening in the world around you, and also about what’s going on inside your body. If your brain were to pay close attention to all the details it is receiving about the state of things within and beyond you, it would rapidly become overloaded. That, of course, would make it useless to you as an organ dedicated to helping you in an admittedly self-serving fashion navigate your way more or less successfully from the cradle to the grave.

It is perfectly understandable, therefore, why your brain perpetually walks a fine line between paying too much attention to what it is being told by its senses, and too little.

Figure 1. “I swear they came out the box this way | by frankieleon” https://www.flickr.com/photos/armydre2008/3576170595

One way the brain accomplishes this delicate balancing act is to put things, people, or events striking it as more or less like one another into the same mind box—that is, into the same mental category. By this I mean what a dictionary says this word means:  “a class or division of people or things regarded as having particular shared characteristics.”

well-known rule of thumb illustrates the point I am trying to make: if it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck. A colorful example is shown in Fig. 1.

But here’s the rub. What if your brain draws the line between too much and too little in the wrong place? What if it doesn’t pay enough attention to what it is being told by your senses about the animal your brain has concluded must be a duck? More to the point, what if making such a categorical mistake leads to serious consequences? Say, mistaking a friend coming into a darkened room for an intruder. And impulsively you shoot your friend dead?

Clearly having a pragmatic brain lodged inside that bony vault up there on your shoulders can be both good and bad, just as my mother would observe.

A world of our own making

Here’s another observation about how humans deal with the world. If novelty is the spice of life, then from your brain’s pragmatic point of view, predictability is life’s bread & butter.

Put simply, the more predictable a situation or event is, the easier it is for your brain to categorize it. And then, if need be, respond appropriately (or not).

Figure 2. By Crusier [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC BY-SA 3.0, from Wikimedia Commons
It is again understandable, therefore, why as a species we humans invest so much of our time and effort (and money) into dumbing down the world around us to make the challenges we face as humdrum, predictable, and therefore categorical as possible.

By “dumbing down” I mean our species is remarkably skilled at remaking the world we live in to be less risky and uncertain than it otherwise would be for us. Said another way, we love to make what’s out there in the world fit into simple, convenient, widely applicable mind boxes, i.e., categories.

Humans are not the only creatures on earth who are predisposed to make the things and events they have to deal with as humdrum as they can make them. Many of the earth’s countless species are similarly committed in their own more limited ways—biochemical, physical, or behavioral—to enhancing their surroundings and creating favorable opportunities for themselves (we are not the only self-centered creatures on earth) by making things more suitable, more accommodating, more predictable. And for them, as well, more categorical.

This last remark is important, as I will be explaining in a later posting in this series. The brain's mind boxes called "categories" may or may not have actual words associated with them that we can use to talk about them. This is often why we may find it hard to put our ideas into words. But with this remark I am getting ahead of what I want to say in this first post. 

Figure 3. Termite mound, Litchfield National Park, Northern Territory, Australia [By brewbooks from near Seattle, USA (Cathedral Termite Mound). CC BY-SA 2.0, via Wikimedia Commons
Classic examples of what other species do to dumb down the world for themselves would be beavers constructing dams to create ponds that help protect them against predators; termites building earthen mounds in Africa, South America, and Australia to live in; birds building nests; and earthworms improving the quality of the soil they move through by eating it and passing it through their bodies, over and over again, generation after generation, thereby making life easier and more fulfilling for the earthworms that take their place in the great circle of life.

Clearly, therefore, we are not alone as a species in being both able and crafty enough to improve our lives and living circumstances by making the world a safer and more predictable place to live in.

Even so, we humans are certifiably the Earth’s champions at the fine and skillful art of redoing the world to suit our needs as well as our fancies, however odd the latter may be (let’s all admit, shall we, that the artificial islands of the exotic tourist resort shown in Fig. 4 are an extreme example of our willingness to redesign the world to suit our fancies and our credit cards).

Figure 4. Palm Island Resort, Dubai, United Arab Emirates https://commons.wikimedia.org/wiki/File:Dubai_-_The_Palm_Jumeirah_-_panoramio.jpg
Confronting our pragmatic and often self-centered ways

We have reason, therefore, to be proud of the fact that our species excels all others at creatively dumbing down the world we live in to make the challenges we face humdrum and predictable. But there are genuine risks involved. Why so? Because we are not truly god-like in our powers. We are not all-seeing and wise. We are not always as good as we may think we are at drawing the line between knowing too much about the world and knowing too little.

And furthermore let’s be honest. Despite rhetoric to the contrary, truth (spelled with or without a capital “T”) may not actually be as appealing and important—that is, as useful—to us during our journey from the nursery to the grave as the pragmatic benefits and virtues of things and events (and people, too) that are easy, convenient, and predictable.

Here then is what this series of posts at SCIENCE DIALOGUES will be about:

  • Millions of years of evolution have done a skillful job of making us clever, inventive, and remarkably successful beings.
  • As history shows us again and again, however, our reliance as a species on the pragmatic (and generally self-serving) strategy of mentally putting things, people, and experiences into separate and seemingly distinct mind boxes—into different categories—often makes it hard for us to notice and pay sufficient attention instead to how things, people, and experiences are almost always linked and interrelated rather than separate and distinct. 
  • In this series, I will be calling the first brain strategy categorical thinking, and the second one relational thinking.
  • My goal in writing these posts will be to survey for you how the second way of thinking about the world and our place in it makes it easier for us to see and understand how widely and often critically things, people, and events impact one another—sometimes in unexpected and even disastrous ways (for example, see: Fig. 5).

Moral of the story so far: while understandable from an evolutionary and psychological point of view, being self-centered creatures is a handicap we humans need ways to confront and overcome.

Dynamic network analysis is one such way. I hope to convince you it is a good one, too.

Figure 5. The beach at Kanapou Bay collects debris from throughout the Pacific Ocean. https://www.flickr.com/photos/noaaphotolib/19778606375
This is Part 1 of a continuing series of posts on dynamic network analysis. Next up: 2. Relativity.
© 2018 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Prehistory and Plug & Play Genetics


June 2, 2018

AS NOTED EARLIER THIS WEEK at SCIENCE DIALOGUES, the popular science monthly Scientific American has now published a lengthy and decidedly critical commentary on current practice in the new field of paleogenetics .

At present it looks like the hype promoting paleogenetics research far exceeds the actual performance.

But who knows what the future will bring once human geneticists realize that there are no simple ways to connect the dots between human genes and the realities of human history.