Category Archives: SOCIAL

Coming soon: Racism, science, and common sense

John Edward Terrell


If you think racism is “prejudice, discrimination, or antagonism directed against someone of a different race based on the belief that one’s own race is superior,” science has something surprising to tell you.


WHAT A DIFFERENCE A DECADE CAN MAKE. Back in 2006, Angela Davis remarked during a keynote address at the University of Wyoming honoring Martin Luther King Jr.’s birthday: “We have been basically persuaded that we should not talk about racism.”  Following the acquittal of George Zimmerman in the shooting death of African-American teen Trayvon Martin in 2013, the activist movement Black Lives Matter was born. Since then the issue of racism has been front and center in American politics. What remains elusive, however, is why racism however motivated finds such fertile ground in the human psyche.

“In Self-Defense”. 1876 editorial cartoon by A. B. Frost. Depicts a caricatured former Confederates in the U.S. South with a knife and smoking gun in his hands standing over the corpse of an African-American toddler. Cartoon by A. B. Frost, published in “Harper’s Weekly”,
October 28, 1876, p. 880
Source: https://commons.wikimedia.org/wiki/File:InSelfDefense12w.jpg

More to come . . .

Editorial cartoon showing a Chinese man, surrounded by luggage labeled “Industry”, “Order”, “Sobriety”, and “Peace”, being excluded from entry to the “Golden Gate of Liberty”. The sign next to the iron door reads, “Notice—Communist, Nihilist, Socialist, Fenian & Hoodlum welcome. But no admittance to Chinamen.” At the bottom, the caption reads, “THE ONLY ONE BARRED OUT. Enlightened American Statesman—’We must draw the line somewhere, you know.'” 1882. Source: https://commons.wikimedia.org/wiki/File:The_only_one_barred_out_cph.3b48680.jpg

Coming soon: Tinker Tailor Soldier Ego, Part 1: Freud is dead

John Edward Terrell and Gabriel Stowe Terrell


THE FIRST THING WE NEED TO NOTE is that Freud is dead. No, we don’t mean the famous 20th century psychologist Sigmund Freud who died in 1939 at the beginning of World War II after struggling for years with cancer (Freud didn’t listen to his doctors, and he really, really liked to smoke cigars). We mean Freud’s way of thinking about how the brain works with the world popularly called Freudian psychoanalysis—although, yes, not every psychologist practicing today would agree with us that Freudian thinking is totally dead and buried.

Source: https://commons.wikimedia.org/wiki/File:Sigmund_Freud_LIFE.jpg

The psychologist and Nobel Laureate Eric Kandel observed in an insightful overview published 1999 that this remarkable man revolutionized our understanding of the human mind during the first half of the 20th century. Unfortunately, as Kandel goes on to say, during the second half of the last century Freudian psychoanalysis did not evolve scientifically. It did not develop objective methods for testing Freud’s excitingly original ideas. As a consequence, Kandel gloomily concluded in his benchmark essay, psychoanalysis entered the 21st century with its influence in decline.

With the passing of psychoanalysis as an instructive way of thinking about how your mind works, nothing comparable in its scope and helpfulness has taken its place, leaving most of us today without a workable framework for understanding ourselves and why we do what we do. As Kandel concluded in 1999: “This decline is regrettable, since psychoanalysis still represents the most coherent and intellectually satisfying view of the mind.”

More to come . . .

Speaking truth to power: The three faces of authority

John Edward Terrell


Please note: this commentary, recovered on 28-Jan-2017, was originally published in Science Dialogues on 21-Febr-2015.


ONE OF THE THINGS I have learned both as a human being and as an anthropologist is that I never fully understand other human beings—and certainly not other anthropologists. In the former category, and sometimes in the latter, I include government bureaucrats, university deans, academic chairs, and institutional vice presidents.

I have also found that the door opens—or rather stays partly closed—both ways. Human beings in such positions of power over other human beings all too often do not seem to understand the human sources of their authority. And therein lies a tale.

Ruatepupuke

On 9 March 1993 after years of discussion, planning, and hard work, Field Museum of Natural History in Chicago and the Maori community at Tokomaru Bay, New Zealand, formally reopened to the public a fully renovated Maori meeting house safeguarded there within the Museum’s 20th century walls.

As one consequence of Museum’s close collaboration with Tokomaru Bay, it is now known for sure that this house in Chicago was built at Tokomaru in 1881 to honor Ruatepupuke, a legendary figure who is said to have brought the art of woodcarving to the Maori people from the underwater house of the sea god, Tangaroa. The ridgepole of the building is his spine; the rafters are his ribs, and the wide boards along the roof at the front are Ruatepupuke’s arms outstretched to welcome visitors.

The Maori meeting house called Ruatepupuke II at the Field Museum of Natural History in Chicago. Source: author.
The three faces of authority

As  a museum curator, I am given to saying that material things mediate human relationships. They mediate our relationships with the world around us. We call them “tools.” They mediate our relationships with other human beings. We talk about them in many ways such as “gifts,” “mobile phones,” and “money.” And things, too, mediate our relationships with worlds unseen or merely imagined. Then we may call them “religious icons,” “ceremonial objects,” “money,” and “computer games.”

While I was working with my Maori friends during the negotiations for and restoration of the incredible “thing” at the Field Museum called Ruatepupuke II, I was lucky enough to learn much about how Maori New Zealanders are likely to think about life, community, and meeting houses.

One of the truly unexpected benefits of this partnership was learning about how nuanced a Maori way of thinking about power can be. They may not have as many ways to talk about authority as a Canadian has at his or her disposal to talk about snow, but they have three ways in particular that reveal a depth of human understanding that is insightful and wise.

Wehi, wana, and ihi

What I learned was that there are at least three different words in the Maori Polynesian language for “power,” each of which captures a different facet of what it means to be powerful:

wehi refers to the power to inspire fear, awe, or dread in the beholder. An example of wehi would be the visceral power of the traditional Maori war dance called the haka. Another would be a phone call from your doctor, department chair, or divisional vice president;

wana can mean  “excitement,” “spiritual awe,” and the like in a more enveloping sense; and

ihi is difficult to translate into English but means, I think, what we would call “confidence,” “charm,” “bearing,” or “inherent authority.” In New Zealand there are sayings to the effect “you do not need to ask who is the chief,” and “everyone knows when the chief has come into the room.” You know you are feeling the ihi of a person or thing when the hairs stand up on the back of your neck.

The fragility of mana

These three faces or facets of power in a Maori sense all work together to nurture what in Polynesian is called mana—yet another word difficult to translate and understand that means, all too simply put, “power,” “prestige,” and “status.” Elsewhere I have argued that this word often can mean what social scientists call social capital.

The point I want to make in telling you all this about these Maori ways of talking about power is that together they reveal how fragile is the power of bureaucrats, deans, chairs, divisional vice presidents, and other authority figures.

The mana of an administrator does not come with the title on the door to his or her office. The ability to hire, fire, or censure someone “under” someone else’s thumb in our own society may have an inherent degree of wehi associated with it because of our legal, corporate, and social conventions. But the ihi and wana of anyone’s “authority” can collapse when the support of others has been lost.

In New Zealand, for example, the primal mana of a chief is said to be passed down by fact or right of birth to his offspring. But what a child then goes on in life to do with such a gift can weaken rather than strength that person’s mana in the eyes of others. Just as a chief who fails in battle may be seen as having lost his mana, so too a child who does not live up to his or her birthright may loose standing and the following of others.

This is a fact of life that needs no translation from Maori into English, and it is a lesson that all those in positions of power would do well to heed.

Social capital, after all, is social, not monetary.

© 2015 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Social network analysis: Hypothesis testing and what-if projections

John Edward Terrell


Please note: this commentary, recovered on 28-Jan-2017, was originally published in Science Dialogues on 13-June-2014.


GIVEN A RELIABLE DATABASE of information and a good computer program (such as Microsoft Excel), it is possible today to simulate a broad range of hypothetical real-world situations under differing possible opening and subsequent conditions (Embrechts and Hofet 2014). Said differently, by changing the parameters and values of a spreadsheet in meaningful ways it is possible to do informative what-if analyses of many kinds of situations—thereby gaining better understanding not only of possible but also plausible outcomes.

Similarly, it is possible to use a good network analysis program (such as UCINET; Borgatti et al. 2013) to simulate differing social situations and their plausible impacts. Here briefly described is one example based on research currently being done to explore the history of social networks along the north coast of Papua New Guinea.

Research question

During the last glacial maximum (~21,000 BP), sea-levels were ~125 m (410 ft) lower than they are today. It is likely that New Guinea’s northern coast was mostly a steep rocky shoreline offering few resources supporting human settlements (Chappell 1982).  As one consequence, New Guinea during the last Ice Age served more as a vicariant barrier than a land bridge between Asia and island Oceania (Terrell 2004).

Figure 1. New Guinea is the second largest island in the world. The northern coastline is over 1,600 miles (2,600 km) long. Shown here in comparison with the 48 mainland states in the U.S.A.

Both historical and archaeological evidence (Welsch and Terrell 1998; Terrell and Schechter 2011) suggests that villages on the northern coastline of New Guinea and the nearby offshore islands have been linked with one another by far-reaching social and economic networks for the past 2,000 years. An obvious and historically important question, therefore, is whether people and places there in the more distant past were similarly integrated in comparable widely-distributed communities of practice (Terrell n.d.).After the last Ice Age, however, sea levels rose steadily and then began to stabilize around their modern levels ~6,000–7,000 years ago. The resulting formation of coastal plains and environmentally productive lagoons and estuaries led to peak biodiversity (Hope and Haberle 2005) and probably also peak human population densities along this coastline between ~4000–2000 BP.

Materials and methods

Figure 2 shows two mini-max networks (Cochrane and Lipo 2010) drawn using UCINET 6 (version 6.289) and NetDraw (version 2.109) with the edges weighted at two different thresholds. The upper network shows the connectivity of places in this region given a maximal customary voyaging distance of 220 km or less—the greatest distance known to have been locally traversed during the Pleistocene and the mid-Holocene prior to ~3300 BP (Golitko and Terrell n.d.). The lower network has a threshold of 360 km—the greatest voyaging distance (from Makira-Ulawa in the Solomon Islands to Temotu in the Reefs/Santa Cruz group) documented as having been crossed during the first settlement of Remote Oceania ~3300–3100 BP (Irwin 1992).

Also shown in this figure are (a) the network positions (blue) of this region’s major sources of obsidian, a volcanic glass widely transported both historically and prehistorically in this region of the world; and (b) the location of our study area (red) on this coast in the Aitape district (Terrell and Schechter 2011).

Figure 2. Connectivity of obsidian sources (blue nodes) and Aitape (red node) on the Sepik coast of Papua New Guinea. Top: when the edge distance is 220 km or less; bottom: when it is 360 km or less (baseline image source: Mark L. Golitko). Likely cut lines in these networks projected using the Girvan-Newman algorithm (Girvan and Newman 2002) are shown here as heavy black lines. The same four groupings in the upper mapping occur at any assumed what-if linkage distance between 186 and 270 km.
Network analysis

Given these analyses, it is readily apparent that the what-if connectivity of these mappings differs markedly. Under the upper scenario, it can be hypothesized that obsidian from sources southeast of Aitape (they are on New Britain Island) has probably been transported from place to place at least as far west as Aitape, but it is less likely that obsidian from the other sources—located in the Admiralty Islands—has also arrived there despite the fact that these sources are geographically closer to our study area. The situation is different in the lower mapping. Instead of four probable groupings within the network shown, there are only two, and given this scenario, when obsidian has reached Aitape, it is more likely to have been mined at the nearer Admiralty sources.

Hypothesis testing

The presence of Admiralty Islands obsidian at prehistoric sites has not been securely documented archaeologically outside the Admiralty Group earlier than the mid 2nd millennium B.C. Its widespread popularity at Aitape and elsewhere in this part of the world thereafter is generally associated with suspected improvements in canoe-making design and technology thought to have been introduced from Island Southeast Asia around this same time (Specht et al. 2014; Terrell n.d.). However, it is also generally accepted that the movement of animals, obsidian, and people between islands and coastal villages was characteristic of life in this part of the world for many millennia before then—in other words, the suspected improvements in watercraft design and voyaging prowess did not initiate coastal and inter-island mobility in this region but instead made longer-distance travel more feasible and routine (Specht et al. 2014).

Figure 3. The actual geographic locations of the obsidian sources (blue dots) and the study area (red dot) at Aitape on the Sepik coast of Papua New Guinea.

While obsidian from Admiralty sources has been found at archaeological sites on the north coast of New Guinea that are younger than ~2000 BP, almost all of the obsidian that has been recovered archaeologically on mainland New Guinea older than ~3,500 BP has been sourced to the the Kutau/Bao locality on the Willaumez Peninsula of western New Britain (Summerhayes 2009).

Our fieldwork at Aitape in 1993/1994 and 1996 supported by the National Science Foundation ((BNS-8819618 and DBS-9120301)  discovered large quantities of obsidian and chert at localities along the former mid-Holocene shoreline (which at Aitape is now located several kilometers inland) including assemblages with notably high frequencies of  obsidian from New Britain marked by large average flake sizes (Golitko 2011)—an archaeological signature consistent with pre-2000 BP obsidian assemblages found elsewhere in northern Melanesia (Summerhayes 2009).

Therefore, given our two what-if network analyses and this archaeological evidence it may be hypothesized that obsidian has probably been indirectly available to people living in what is now the Aitape district ever since the stabilization of world sea levels around 6,000–7,000 years ago, but it is likely that the major sources of this natural glass prior to ~3,500 BP were those located on New Britain.

With funding from the National Science Foundation my colleague Dr. Mark Golitko is currently (June–July 2014) leading a research team at Aitape that is surveying archaeological sites there on the mid-Holocene (~5000 BP) shoreline (as reconstructed from estimated local uplift rates and sea-level records) to document how far-reaching or alternatively how restricted were cultural and material exchanges on this coast at that time. Discovering how isolated or widely linked communities at Aitape were during the mid-Holocene is  critical to understanding the patterning of modern human diversity in northern New Guinea and elsewhere in the Pacific (Terrell 2010a, 2010b).

Conclusions

Obsidian has long been a popular although largely nonessential raw material in the Pacific (as elsewhere on earth) despite the fact that alternative and equally useful cutting materials (such as bamboo) are readily available. Hence the ancient transport of obsidian through inter-community networks is commonly interpreted by archaeologists as more a social phenomenon than a practical (“economic”) necessity (Torrence 2011). As suggested by the what-if analyses discussed here, we anticipate  that Golitko and his team will discover this summer that obsidian was reaching communities on the Sepik coast well before ~3,500 BP.

Funding for this research was provided by National Science Foundation Grant No. BCS-1155338–”Archaeological and Environmental Investigations along the mid-Holocene shoreline near Aitape, Northern Papua New Guinea,” Mark L. Golitko and John E. Terrell.
References:

Borgatti, S. P., M. G. Everett, and J. C. Johnson. 2013. Analyzing social networks. Los Angeles: Sage.

Chappell, J. 1982. Sea levels and sediments: some features of the context of coastal archaeological sites in the Tropics. Archaeology in Oceania 17:69–78.

Cochrane, E. E. and C. P. Lipo. 2010. Phylogenetic analyses of Lapita decoration do not support branching evolution or regional population structure during colonization of Remote Oceania. Philosophical Transactions of the Royal Society B 365:3889–3902.

Embrechts, P. and M. Hofet. 2014. Statistics and quantitative risk management for banking and insurance.  Annual Review of Statistics and It Application 1: 493–514.

Girvan, M. and M. E. J. Newman. 2002. Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99:7821–7826.

Golitko, M. 2011. Provenience Investigations of Ceramic and Obsidian Samples Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Portable X-Ray Fluorescence. In Exploring prehistory on the Sepik coast of Papua New Guinea, J. E. Terrell and E. M. Schechter, eds., pages 251–287. Fieldiana Anthropology New Series No. 42. Chicago: Field Museum of Natural History.

Golitko, M. and J. E. Terrell. n.d. Modeling cultural patterning and prehistoric interaction along the “inland” Bismarck Sea using network analysis. Unpublished manuscript, 2012 NEOMAP Project “Inland Seas in a Global Perspective,” Leiden, Netherlands.

Hope, G. S. and S. G. Haberle. 2005. The history of the human landscapes of New Guinea. In Papuan Pasts: cultural, linguistic, and biological histories of Papuan-speaking peoples, A. Pawley, R. Attenborough, J. Golson, and R. Hide, eds., pages 541–554. Canberra: Pacific Linguistics.

Irwin, G. J. 1992. The prehistoric exploration and colonisation of the Pacific. Cambridge: Cambridge University Press.

Specht, J., T. Denham, J. Goff, and J. E. Terrell. 2014. Deconstructing the Lapita cultural complex in the Bismarck Archipelago. Journal of Archaeological Research 22:89–140.

Summerhayes, G. R. 2009. Obsidian network patterns in Melanesia—sources, characterisation and distribution. IPPA Bulletin 29:109–124.

Terrell, J. E. 2004. The “sleeping giant” hypothesis and New Guinea’s place in the prehistory of Greater Near Oceania. World Archaeology 36:601–609.

Terrell, J. E. 2010a. Language and material culture on the Sepik coast of Papua New Guinea: using social network analysis to simulate, graph, identify, and analyze social and cultural boundaries between communities. The Journal of Island and Coastal Archaeology 5:3-32.

Terrell, J. E. 2010b. Social network analysis of the genetic structure of Pacific Islanders. Annals of Human Genetics 74:211–232.

Terrell, John Edward. n.d. Understanding Lapita as history. In The Oxford handbook of prehistoric Oceania, Ethan Cochrane and Terry Hunt, eds. Oxford: Oxford University Press.

Terrell. J. E. and E. M. Schechter. 2011.Archaeological investigations on the Sepik coast of Papua New GuineaFieldiana: Anthropology42:1–303.

Torrence, R. 2011. Finding the right question: learning from stone tools on the Willaumez Peninsula, Papua New Guinea. Archaeology in Oceania 46: 29-41.

Welsch, R. and J. E. Terrell. 1998. Material culture, social fields, and social boundaries on the Sepik coast of New Guinea. In The archaeology of social boundaries, Miriam Stark, ed., pages 50–77. Washington: Smithsonian Institution Press.

© 2014 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

America’s latest “cargo cult”?

John Edward Terrell


In the 16th century, faced with reformers who thought they knew the way forward better than he did, Martin Luther is famous for having said what Jesus once said (Matthew 16:23) “Devil get thee behind me.” Waking up on Wednesday morning, November 9th, the majority of voters in America may have felt the same. Trump hadn’t won the election. Yet he had won the American presidency thanks to the peculiar institution of the Electoral College. Trump and the reformist movement of the seemingly disadvantaged and overlooked in American society he asserted he was leading would now be empowered to drain the swamp in Washington and make America great again.

Source: http://maxpixel.freegreatpicture.com/Bubble-Rainbow-Colorful-Iridescent-Soap-Bubble-1891638

Or maybe not. Since the election everyone or her brother has come forward with an explanation for what happened to bring about such a cataclysmic realignment of the stars. It’s the economy. No, it’s Neoliberalism. No, it’s racism, pure and evil. No again, it’s the sheer stupidity of the American masses. The list of reasons for the success of The Donald is as lengthy as there are people in the room to offer them.

I am an anthropologist who works in the South Pacific where social movements like Trump’s have been commonplace. Out there we call them “cargo cults” since many of these often short-lived social uprisings have centered on ways to miraculously achieve wealth and Western material goods. Academics also call them “nativistic movements.” Others prefer “millenarian movements,” and suggest Christianity began as just such reformist movement among the discontented Jewish faithful living under yoke of Roman rule. The anthropologist Anthony F. C. Wallace at the University of Pennsylvania, however, preferred instead “revitalization movements.” Whatever label used, Wallace defined such a social movement as a “deliberate, organized, conscious effort by members of a society to construct a more satisfying culture.”

Many years ago I had the good fortune to take Wallace’s course on these self-conscious populist efforts by which people seek to recover their sense of self-worth and dignity. If he were alive today—he died in 2015 at 92—my wager would be that he might have predicted the outcome of our recent election. He would have seen Trump for what he is, not the Devil incarnate. But rather a razzle-dazzle Harold Hill kind of prophet, however flawed or sincere you take him to be.

Wallace also might have observed—perhaps even in time to save the day for her—that the way to handle an upstart like Donald J. Trump  is definitely not the way Hillary tackled him. Not by ridicule or tones of elite superiority, but instead by matching his magical vision of what makes America great with an equally visionary (and perhaps similarly magical) wish-dream of her own. In short, she should have fought fire with fire much the way Bernie Sanders did for many months before the Democratic Convention. You don’t have to be Harry Potter to know it takes magic to defeat magic.

Wallace was an authority on the spiritual and social revivalist movement among the Iroquois of upstate New York in the early 19th century inspired and led by the Seneca prophet Handsome Lake. Here are a few basic facts. A century earlier, the Iroquois had been a powerful political and economic force in the northeastern United States thanks to the fur trade. Then they had the misfortune to side with the British during the American Revolution. Thereafter, they found themselves cramped into small reservations on both sides of Canada-U.S.A. border.

No need to give you details of Handsome Lake’s prophetic message or the religious movement he led until his death in 1815 beyond noting that many today still embrace his message of redemption. Here instead is the lesson for all of us Wallace drew from his scholarly research on Handsome Lake and also several hundred other similar case studies down through history.[1]

Wallace argues that revitalization movements in general, not only what Handsome Lake said he was inspired by the Creator to lead, have a common pattern that can be broken down into five steps or phases of development.[2] Wallace’s own phrasing of these five is academic. I have rewritten them to make them more user-friendly by restating them as if being seen in hindsight by someone participating in such a movement.

  1. Once upon a time life was good. We were happy, hopeful, and successful.
  2. Then things changed, and we started feeling that how we were living was not fulfilling our needs and aspirations.
  3. We entered an increasingly difficult time when our old ways no longer gave us what we want out of life. Many of us cast about for alternative and often unsatisfactory ways to bring meaning back into our lives by turning to alcohol, drugs, or social deviance. Disillusionment and apathy became common.
  4. Then suddenly someone came forward with a transformative vision, a way by which we could rediscover better days—Wallace called such an inspirational experience a prophetic “vision-dream”—setting out what must be done to feel good again, and be as successful as we once were. Here Wallace’s own words directly apply: “Converts are made by the prophet. Some undergo hysterical seizures induced by suggestion in a crowd situation; some experience an ecstatic vision in private circumstances; some are convinced by more or less rational arguments, some by considerations of expediency and opportunity. A small clique of special disciples (often including a few already influential men) clusters about the prophet and an embryonic campaign organization develops with three orders of personnel: the prophet; the disciples; and the followers. Frequently the action program from here on is effectively administered in large part by a political rather than a religious leadership. Like the prophet, many of the converts undergo a revitalizing personality transformation.”
  5. So now it looks like we are in for good times again. Perhaps. As Wallace wrote: “This group program may, however, be more or less realistic and more or less adaptive: some programs are literally suicidal; others represent well-conceived and successful projects of further social, political, or economic reform; some fail, not through any deficiency in conception and execution, but because circumstances made defeat inevitable.”

Who knows whether Donald Trump has ever had anything like a prophetic vision-dream in all his 70 years of life. However, judging by his public performances during the recent campaign, it can be maintained he did begin to see himself as the true prophet (“I am your voice”) of his very own personal revitalization movement.[3]

Is he sincere? Who knows? But here is my first point. What we are now experiencing in America isn’t something new and certainly not something strange. So stop trying to pin down and blame this or that for why The Donald won. People can be unhappy with their lot in life for countless reasons, not just because down deep inside they genuinely loathe immigrants, are racists, are fed up with the same-old, same-old coming out of Washington, or any of the other countless excuses being offered by pundits or exchanged at Starbucks between friends still in shock.

Here’s my second point. It is time to focus on Wallace’s last step. Here there is reason to worry. As Wallace wrote: “In instances where organized hostility to the movement develops, a crystallization of counter-hostility against unbelievers frequently occurs, and emphasis shifts from cultivation of the ideal to combat against the unbeliever and uncertainty.” I am not the first suggest we will be going down a very rocky road to 2020. Since I am almost as old as he is, it is fair for me to say to Bernie Sanders that we will need a new prophet to lead those of us who were in this camp to the Promised Land.

[1] Wallace, Anthony. Death and Rebirth of Seneca. Vintage, 2010.

[2] Wallace, Anthony FC. “Revitalization movements.” American anthropologist58, no. 2 (1956): 264-281.

[3] https://www.youtube.com/watch?v=ehvUQrRDyyU


This post was first published on 1 January 2017 at SCIENCE DIALOGUES, and a link was corrected on 11 January 2017


John Edward Terrell is Regenstein Curator of Pacific Anthropology at The Field Museum, Chicago, IL 60605. His latest book A Talent for Friendship: Rediscovery of a Remarkable Trait was published on December 1, 2014 by Oxford University Press. Email address: terrell[at]fieldmuseum.org

© 2017 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Logical seduction and historical delusion

John Edward Terrell


Please note: this commentary, recovered on 9-Jan-2017, was originally published in Science Dialogues on 20-Feb-2015.


In his acclaimed novel The Oxford Murders, the Argentinean writer and mathematician Guillermo Martínez engagingly shows how easy it is to hide the truth from others by getting them to think that a series of similar events—in this instance, a series of murders—is happening because, when taken in sequence, they appear to add up to a coded message that we are being taunted to decipher.

Judging by appearances, each murder apparently symbolizes one of the logical steps in a predictable sequence, just as most of us would probably agree that the next logical number in the familiar series 2, 4, 8, and 16 must be the multiple 32.  Perhaps, but as the philosopher Ludwig Wittgenstein famously observed, any finite sequence of numbers can be continued in a variety of different ways, not just in the one way that may seem reasonable (Biletzki and Matar 2006).

For example, the narrator, whose name we are never told, is asked early in this novel if he can figure out what is the next symbol in the odd series reproduced here as Fig. 1a.

Figure 1.

Figure 1. Alternative possible solutions
to Martínez’s cryptic symbol series.

Although Martínez never shows us the solution he has in mind (the narrator merely tells us later on that the answer is the number series 1, 2, 3, 4), we suspect those who find riddles like this one appealing are likely to say the solution shown in Fig. 1b is the right resolve:  an answer derived from the rules of symmetry (Fig. 1c). Yet in keeping with Martínez’s revealing observations about both logic and magic set here and there in this story, what if the proper solution is not so playful?

For example, what if the three symbols already revealed follow instead the alternative rule that one stroke equals 1?  If this were so, then the missing fourth symbol in this cryptic series would not be an “M” with a bar drawn horizontally through it (in keeping with our different rule, this strange symbol could stand instead for the number 5), but disconcertingly could be drawn either as a single stroke (Fig. 1d), or possibly as an inscribed circle, the letter “O,” or a zero (Fig. 1e).

Doubt as to the proper resolve of Martínez’s series of symbols illustrates Wittgenstein’s cryptic and oft-quoted remark:  “This was our paradox:  no course of action could be determined by a rule, because every course of action can be made out to accord with the rule. The answer was:  if everything can be made out to accord with the rule, then it can also be made out to conflict with it. And so there would be neither accord nor conflict” (quoted in:  Biletzki and Matar 2006).

I am not a philosopher, nor a novelist.  It seems to me, however, that Martinez’s tale and Wittgenstein’s remark both tell us something about ourselves, about how we are given to looking for similarities among things and events proving that what we are seeing makes sense not by chance but necessity.  It might even be argued that human beings are strongly predisposed to equate similarity with necessity.

This is why we need statisticians, however much statistics may sometimes seem only a cultivated way of lying for effect.  They keep us from foolishly jumping to the conclusion that similarities in appearance or similarities in effect are necessarily similarities of cause.

And in this regard, we need to remember that when statisticians say that something should be attributed to “chance,” they do not mean “without cause.”  Far from it:  the point they are making is that the cause (or causes) is not necessarily the one we think it is.

Note: These observations were originally published as the introduction in my chapter "Return to the entangled bank: Deciphering the Lapita cultural series" in Sheppard, P. J., Thomas, T., and Summerhayes, G. R., eds., Lapita: Ancestors and Descendants, pages 255-269. Monograph 28. New Zealand Archaeological Association, Auckland, 2009.
Reference

Biletzki, Anat and Matar, Anat, “Ludwig Wittgenstein”, The Stanford Encyclopedia of Philosophy (Spring 2014 Edition), Edward N. Zalta (ed.), URL = <http://plato.stanford.edu/archives/spr2014/entries/wittgenstein/>.


BW-JET

John Edward Terrell is Regenstein Curator of Pacific Anthropology at The Field Museum, Chicago, IL 60605. His latest book A Talent for Friendship: Rediscovery of a Remarkable Trait was published on December 1, 2014 by Oxford University Press. Email address: terrell[at]fieldmuseum.org

© 2015 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

 

Thinking about thinking 1. Cognitive niche construction

John Edward Terrell 

Please note: this commentary, recovered on 9-Jan-2017, was originally published in Science Dialogues on 22-Jan-2015.


“Can we state more distinctly still the manner in which the mental life seems to intervene between impressions made from without upon the body, and reactions of the body upon the outer world again?”

William James, The Principles of Psychology, 1890: 6

By Dmitry Rozhkov (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
THE NEUROLOGIST MARCUS RAICHLE HAS remarked that studies of brain function have traditionally focused on task-evoked responses (Raichle 2010, 2015). As Daniel Kahneman has explained, such research has contributed the useful convention that there are two modes of thinking—two systems in the mind, System 1 (or Type 1) and System 2 (or Type 2). In Kahneman’s words (2011: 20–21):

System 1 operates automatically and quickly, with little or no effort and no sense of voluntary control.

System 2 allocates attention in the effortful mental activities that demand it, including complex computations. The operations of System 2 are often associated with the subjective experience of agency, choice, and concentration.

Although such conventions are useful, Raichle argues that focusing on task-evoked responses “ignores the alternative possibility that brain functions are mainly intrinsic, involving information processing for interpreting, responding to and predicting environmental demands” (2010: 180).

As he says, it is not difficult to see why so much attention has been given to monitoring neural responses to carefully designed tasks that can be rigorously controlled: “evaluating the behavioral relevance of intrinsic activity (i.e. ongoing neural and metabolic activity which is not directly associated with subjects’ performance of a task) can be an elusive enterprise” (2010: 180).

While it could be argued that intrinsic brain tasks are part and parcel of System 2 thinking, I believe it may be more constructive to infer instead that there is a third mode of thinking—one that I have suggested may be called cognitive niche construction (Terrell 2015: 29–32, 168–172)—a way of thinking that may strongly engage the brain’s default-mode network.

Default-mode network

As Raichle (2015) and Robert Spunt and his colleagues (in press) have underscored, there is considerable metabolic cost to running the human brain when it is engaged in ongoing internal activity. As the latter researchers observe: “most of the brain’s energy budget is consumed not by activity evoked by specific cognitive tasks (e.g., mental arithmetic) but by spontaneous ongoing activity that is most notable when the brain is at rest.”

Given the metabolic cost of this ongoing internal activity in what has been dubbed the brain’s default mode network (DMN) when we are not task-engaged, an obvious question arises. How can we afford such stimulus-independent activity?

Raiche, Spunt et al., and others stress the likelihood that such inner-directed brain activity must be somehow adaptive in a realistic Darwinian sense, i.e., this inner activity must be “functionally consequential for the execution of stimulus-dependent mental state inferences” (Spunt et al. in press). This inference is plausible, but arguably not sufficient.

Niche construction

How we are able to remake the world around us when we put our minds and backs to the effort has been called niche construction (Odling-Smee et al. 2003). In the biological sciences, the word “niche” means “way of life,” and every species is said to have its particular place, or niche, in the economy of life. We are just one of a number of species that excel at making and remaking their way of life, their place in the grand scheme of things, their ecological niche. Similarly, I have argued that even when it may look as if we are day-dreaming, our minds actually may be hard at work engaged in cognitive niche construction—a way of using our brains that is possibly but not necessarily unique to our species (Terrell 2015).

Others recently have also written about cognitive niche construction, but what they evidently have in mind may be more clearly activity under the heading of System 2 thinking. Steven Pinker, for instance, has defined cognitive niche construction as “a mode of survival characterized by manipulating the environment through causal reasoning and social cooperation” (Pinker 2010: 8993).

Such a description glosses over how difficult it can be to apply what we envision in our mind’s eye to the realities of life. More to the point, such a definition does not confront the obvious weakness of cognitive niche construction at least as I have described it. What goes on between our ears when we are engaged in such mental activity does not have to be rational at all, at least not if by “rational” we mean thinking that makes practical sense in the real world outside our bodies.

A Paradox

By detaching from the realities of the moment and turning our mind to our inner thoughts, we are able to ponder what I like to call the “coulds & shoulds” of life. We can devote our mind to a kind of imaginary niche construction that does not even have to be “of this world” at all. We can see seemingly impossible things in our mind’s eye. We can engage in “what if” fantasies of remarkable, perhaps sexually charged, and even quite unrealistic complexity. We can invent imaginary worlds, invent new things, rewrite the story of our life to our heart’s content. All in the mind rather than in the real world.

In short, it seems likely we engage in cognitive niche construction not just for interpreting, responding to, and predicting environmental demands—to paraphrase what Raichle has previously said. As Spunt et al. observe: “Given that the DMN activity is metabolically costly, widely distributed in the cortex, and highly sensitive to both the presence and type of task demand, it should be no surprise that this network would have functional consequences in multiple domains” (Spunt et al., in press).

They themselves hypothesize that natural selection has favored the evolution of such a costly DMN in humans (and possibly also in chimpanzees and monkeys) so that we can more skillfully “see the world in terms of other minds” and live together socially—thereby gaining far more socially than would be likely by living separately.

While this is a plausible hypothesis, it is not the only one possible, as Gabriel Terrell and I will discuss in the forthcoming commentaries.


Editor’s note: This is the first in a series of eight commentaries at SCIENCE DIALOGUES on cognitive niche construction and its implications for psychology, philosophy, and the social sciences generally.

Next in this series: “Thinking about thinking 2. Through the looking-glass.”


References

Kahneman, Daniel (2011). Thinking: Fast and Slow. New York: Farrar, Straus and Giroux.

Odling-Smee, F. John, Kevin N. Laland, and Marcus W. Feldman (2003). Niche Construction. Princeton: Princeton University Press.

Pinker, Steven (2010). The cognitive niche: Coevolution of intelligence, sociality, and language. Proceedings of the National Academy USA 107, suppl. 2: 8993–8999.

Raichle, Marcus (2010). Two views of brain function. Trends in Cognitive Sciences 14: 180–190.

Raichle, Marcus (2015). The restless brain: How intrinsic activity organizes brain function. Philosophical Transactions of the Royal Society B 370: 20140172. http://dx.doi.org/10.1098/rstb.2014.0172

Spunt, Robert P., Meghan L. Meyer, and Matthew D. Lieberman (in press). The default mode of human brain function primes the intentional stance. Journal of Cognitive Neuroscience.

Terrell, John Edward (2015). A Talent for Friendship: Rediscovery of a Remarkable Trait. Oxford and New York: Oxford University Press.


John Edward Terrell is Regenstein Curator of Pacific Anthropology at The Field Museum, Chicago, IL 60605. His latest book A Talent for Friendship: Rediscovery of a Remarkable Trait was published on December 1, 2014 by Oxford University Press. Email address: terrell[at]fieldmuseum.org

© 2015 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Human biogeography 3. Defining the agenda

John Edward Terrell


Please note: this commentary, recovered on 15-Jan-2017, was originally published in Science Dialogues on 12-Feb-2015.


Abstract – Human biogeography is not a thriving scientific enterprise. Why? In part because our species is remarkably talented at niche construction and highly inventive at adapting our socially learned ways of making a living and staying alive to meet the challenges and opportunities around us wherever we find ourselves on the planet. Nonetheless there is political as well as scientific need in the 21st century for an inclusive biogeographical perspective on human diversity recognizing that we are a globally distributed species whose diversity is framed by isolation-by-distance constrained by our social, economic, and political networks, and whose impact on the environment and our own sustainability is substantial and critically in need of informed restructuring.

This is part 3 of a 3 part series at SCIENCE DIALOGUES


POSSIBLY THE FIRST ATTEMPT IN RECENT YEARS to put humans on the agenda of biogeography was in 1974 at a small invitational conference in Washington, D.C. with this goal supported by the Wenner-Gren Foundation for Anthropological Research and organized by William Fitzhugh at the Smithsonian Institution and John Terrell at Field Museum of Natural History in Chicago (Kolata 1974). Human biogeography was provisionally defined by the organizers as “the study of the size, distribution, and population structure of, and the interactions among, human populations found in similar or divergent habitats, and of the conditions and events leading to the development and maintenance of similarities and differences among human populations living at various points on the earth’s surface” (Terrell 1977c: 5).

In 2012 the University of California Press published the first modern textbook in English on how and why we are distributed as we are globally, Alexander Harcourt’s Human biogeography (2012). As one reviewer noted about this book: “to study such patterns effectively one must not only work with an immense body of data, but also effectively employ theories and methods from both anthropology and biogeography” (Banks 2013: 39). Further, much of human diversity, as Harcourt emphasizes, is not about genes determining human behavior or even influencing what we do, but rather about our socially mediated interactions with the world (Hart 2012: 330).

Units of analysis

The biologist Richard Levins, one of the attendees at the Washington conference in 1974, pointed out that comparing the geographical distribution, variation, and demographic characteristics of human beings with these dimensions in other species is problematic. Biogeographers commonly then and now use taxonomic species as their units of analysis since (by definition, at least) species cannot interbreed. But what characteristics should be used to delimit appropriate human units for comparison given that all of us can at least potentially interbreed even if circumstance, preference, or spatial remove may keep Homo sapiens from being a panmictic species (Caspari 2003)?

When the science writer Gina Kolata reported in Science in 1974 on this conference, she noted that selecting the appropriate human units might be contingent on the research question being asked. If so, then defining the units might be done, for instance, by parsing linguistic, genetic, or cultural traits as the salient diagnostic characters (Kolata 1974). However, the crux of the issue raised by Levins and others at the conference remains. When it comes to variation within our species are the units however defined biologically meaningful? For example, are human groups defined linguistically (i.e., as ethnolinguistic populations) also biologically discernible, informative, and more than ephemeral (Kelly 2002)?

The answer is probably negative. The partitioning of people by language, for instance, is perhaps more extreme in the New Guinea region of the southwestern Pacific than anywhere else on earth. Although it has long been conventional to say that linguistic differences can be used to map biologically persistent populations, research on both cultural and genetic similarities and differences among communities in this part of the world has shown that their diversity when mapped geographically is structured most clearly not by language but rather by isolation-by-distance constrained by social networks and local environmental conditions such as ground slope and topographic ruggedness (Terrell 2010a, 2010b).

Systematic human biogeography

Although, as Barth remarked, it has long been conventional to talk about diversity within our species by presupposing there are discrete aggregations of people on earth that can be labeled as human populations, ethnic groups, and the like, it is probable that many of those attending the 1974 conference were fully aware of the challenges of defining units of analysis in the human sciences. They were not merely trying to map these sciences into the research agenda of species biogeography as then understood and practiced in the biological sciences. Yet it is also true, as John Terrell noted in the introduction to the resulting conference volume, that our human environment is not just a social construct: “People are [also] elements in a far more complex system, at best only partly of man’s design . . . within which a change in anyone element or relationship is likely to effect changes, of a greater or lesser degree, in all the others” (Terrell 1977a: 245).

Although the phrase has won few converts, Terrell suggested at the conference that such networks of interactions might be called geographic systems:

a geographic system is the interactive configuration among the size, distribution and interaction structure of a set of local populations and the elements and interaction structure of the area of their occurrence, analysed as a complex of intercommunicating variables within which a change in any one variable or relationship is likely to effect changes, of a greater or lesser degree, in all the others. (Terrell 1977b: 65)

Key here is the qualification “a greater or lesser degree.” As Herbert Simon once remarked: “To a Platonic mind, everything in the world is connected with everything else—and perhaps it is. Everything is connected, but some things are more connected than others” (Simon 1973: 23). What Simon had in mind were complex hierarchical systems: a broad class (physical, chemical, biological, social, or artificial) exhibiting what he termed “loose horizontal coupling” permitting “each subassembly to operate dynamically in independence of the detail of the others; only the inputs it requires and the outputs it produces are relevant for the larger aspects of system behavior” (1973: 16).

Networks human biogeography

Folk human biogeography presupposes that groups of some kind exist (perhaps simply because people say they exist), and similarities among such corporate players on the world stage of history can be attributed to common ancestry, adaptive convergence, or diffusion (which in the biological sciences is often called admixture) across the boundaries that supposedly exist between such corporate entities (Bashkow 2004). Systematic human biogeography interpreted the way Simon has described complex systems similarly also would appear to take for granted the presence of subsystems needing to communicate with one another but only in so far as inputs and outputs are relevant to the behavior and survival of the system as a whole. Yet harkening back to Levins’ concern in 1974: how should we define boundaries and systems in human biogeography?

Proximal-point analysis of the Solomon Islands and neighboring islands to the northwest (John Terrell, Smithsonian Conference, 1974).

Although not given much attention at the conference in 1974, an alternative strategy using graph theory was showcased during one of the presentations then (Terrell 1977c), and it is now widely recognized that Simon’s way of thinking about systemic relationships is not the only way to think about the dynamics of loosely-coupled systems. In 1973, for example, Mark Granovetter (1973) used graph theory—now more generally known as network analysis—to examine how the strength of our ties with others can determine our social mobility, the diffusion of ideas, the political and economic organization of society, and on a more general level, the cohesion of society writ large.

Network analysis enables us see the world around us as one of connections that shape observed phenomena, rather than as one where the intrinsic properties of predefined entities—groups, populations, tribes, systems, and the like—determine the behavior and outcomes of human interactions. Today network analysis in biogeography holds promise, but is still far from conventional (e.g., Kivelä et al. 2015; Radil et al. 2010; Terrell 2010b).

Conclusion

As Shakespeare asked, what’s in a name? It could be argued that anthropology, ethnology, or Erdkunde in the 19th century was simply another name for what would now be called biogeography focused narrowly on one species, namely us (Terrell 2006). This synonymy would be harder to assert for anthropology, human geography, and biogeography in the 20th century in part because the renowned anthropologist Franz Boas and his many prominent students in North America were generally successful at least within the academy at promoting the view that culture (i.e., social learning) is the cardinal trait uniquely defining us as a species (Lewis 2008)—although this historical claim can be contested (Koelsch 2003; Verdon 2006, 2007). What about the 21st century? Is there gain or advantage to be had today by still seeking to unite at least some of the elements of these realms of study under the neglected heading human biogeography?

Martinus Beijerinck in his laboratory, 12 May 1921. Source: http://commons.wikimedia.org/wiki/File:Mwb_in_lab.JPG. US.PD. “Beijerinck was a socially eccentric figure. He was verbally abusive to students, never married, and had few professional collaborations. He was also known for his ascetic lifestyle and his view of science and marriage being incompatible. His low popularity with his students periodically depressed him, as he very much loved spreading his enthusiasm for biology in the classroom.” http://en.wikipedia.org/wiki/Martinus_Beijerinck.

There is at least one practical reason to do so. While it might seem contentious, it could be said that science as a human activity is more tribal than our species itself. From a social scientist’s point of view—given that we do not naturally come in kinds—it seems astonishing that some geneticists today, for instance, would accept the old folk belief that human groups—geneticists call them populations—are so biologically isolated, and interactions, biological or otherwise, among people living in different places on earth are so rare, that it is proper to assume our biological similarities from place to place must be due to “sudden or gradual transfers of genetic material, creating admixed populations” (Hellenthal et al. 2014: 747; also Elhaik et al. 2014). Perhaps if there were a discipline called human biogeography, it would be more difficult for biologists to overlook what social scientists can tell them about our species, and vice versa.

Acknowledgments

I thank Eric Clark, Mark Golitko, John Hart, and Kevin Kelly for comments on the working draft.

References      § = suggested further reading

Banks, W. E. (2013). Review of Harcourt, Human biogeography. Quarterly Review of Biology 88, 39–40.

Barth, F. (1969). Introduction. In Barth, F. (ed.) Ethnic groups and boundaries: The social organization of culture difference, pp 9–38. Boston, MA: Little, Brown and Company.

Bashkow, I. (2004). A neo-Boasian conception of cultural boundaries. American Anthropologist 106, 443–458.

Caspari, R. (2003). From types to populations: A century of race, physical anthropology, and the American Anthropological Association. American Anthropologist 105, 65–76.

Castree, N. (2009). Charles Darwin and the geographers. Environment and Planning A 41, 2293–2298. §

Cox, C. B. and Moore, P. D. (2010). Biogeography: An ecological and evolutionary approach. 8th ed. Hoboken, NJ: John Wiley & Sons.

Elhaik, E., Tatarinova, T., Chebotarev, D. et al. (2014). Geographic population structure analysis of worldwide human populations infers their biogeographical origins. Nature Communications DOI: 10.1038/ncomms4513.

Fuentes, A., Marks, J., Ingold, T. et al. (2010). On nature and the human. American Anthropologist 112, 512–521.

Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology 78, 1360–1380. §

Harcourt, A. H. (2012). Human biogeography. Berkeley: University of California Press. §

Hart, J. P. (2012). Why we are what and where we are. Science 338, 330.

Hellenthal, G., Busby, G. B. J., Band, G. et al. (2014). A genetic atlas of human admixture history. Science 343, 747–751.

Kelly, K. M.  (2002). Population. In Hart, J. P. & Terrell, J. E. (eds.) Darwin and archaeology: A handbook of key concepts, pp 243–256. Westport, Ct: Bergin & Garvey. §

Kivelä, M., Arnaud-Haond, S. and Saramäki, J. (2015).  EDENetworks: A user-friendly software to build and analyse networks in biogeography, ecology and population genetics. Molecular Ecology Resources 15, 117–122.

Koelsch, W. A. (2004). Franz Boas, geographer, and the problem of disciplinary identity. Journal of the History of the Behavioral Sciences 40, 1–22.

Kolata, G. B. (1974). Human biogeography: Similarities between man and beast. Science 185, 134–135.

Laland, K. N. and O’Brien, M. J. (2011). Cultural niche construction: An introduction. Biological Theory 6, 191–202.

Lao, O., Lu, T. T., Nothnagel, M. et al. (2008). Correlation between genetic and geographic structure in Europe. Current Biology 18, 1241–1248.

Lesser, A. (1961). Social fields and the evolution of society. Southwestern Journal of Anthropology 17, 40-48. §

Lewis, H. S. (2008). Franz Boas: Boon or bane? Reviews in Anthropology 37, 169–200.

Odling-Smee, F. J., Laland, K. N. and Feldman, M. W. (2003). Niche construction. Princeton: Princeton University Press.

Radil, S. M., Flint, C. and Tita, G. E. (2010). Spatializing social networks: Using social network analysis to investigate geographies of gang rivalry, territoriality, and violence in Los Angeles. Annals of the Association of American Geographers 100, 307–326. §

Simon, H. A. (1973). The organization of complex systems. In Pattee, H. H. (ed.) Hierarchy theory: The challenge of complex systems, pp 1–27. New York: George Braziller.

Stocking, G. W., Jr (1987). Victorian anthropology. New York: Free Press.

Terrell, J. E. (1977a). Biology, biogeography and man. World Archaeology 8, 237–248.

Terrell, J. E. (1977b). Geographic systems and human diversity in the North Solomons. World Archaeology 9, 62–81.

Terrell, J. E. (1977c). Human biogeography in the Solomon Islands. Fieldiana: Anthropology 68, 1–47.

Terrell J. E. (2006). Human biogeography: Evidence of our place in nature. Journal of Biogeography 33, 2088–2098. §

Terrell, J. E. (2010a). Language and material culture on the Sepik coast of Papua New Guinea: Using social network analysis to simulate, graph, identify, and analyze social and cultural boundaries between communities. Journal of Island and Coastal Archaeology 5, 3–32.

Terrell, J. E. (2010b). Social network analysis of the genetic structure of Pacific Islanders. Annals of Human Genetics 74, 211–232. §

Terrell, J. E. (2014). A talent for friendship: Rediscovery of a remarkable trait. Oxford: Oxford University Press. §

Verdon, M. (2006). The world upside down: Boas, history, evolutionism, and science. History and Anthropology 17, 171–187.

Verdon, M. (2007). Franz Boas: Cultural history for the present, or obsolete natural history? Journal of the Royal Anthropological Institute (N.S.) 13, 433–451.

Vincent, J. (2009). Ahead of his time? Production and reception in the work of Alexander Lesser. American Ethnologist 15, 743–751.

Wade, N. (2014). A troublesome inheritance: Genes, race and human history. New York: Penguin Press.

Watson, J. B. (1990). Other people do other things: Lamarckian identities in Kainantu subdistrict, Papua New Guinea. In Linnekin, J. & Poyer, L. (eds.) Cultural identity and ethnicity in the Pacific, pp 17–41. Honolulu: University of Hawai‘i Press.

Wilson, E. O. (1978). On human nature. Cambridge, MA: Harvard University Press.

Wilson, E. O. (2012). The social conquest of the earth. New York: Liveright (a division of W. W. Norton).

© 2015 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Human biogeography 2. Human diversity

John Edward Terrell


Please note: this commentary, recovered on 15-Jan-2017, was originally published in Science Dialogues on 5-Feb-2015.


Abstract – Human biogeography is not a thriving scientific enterprise. Why? In part because our species is remarkably talented at niche construction and highly inventive at adapting our socially learned ways of making a living and staying alive to meet the challenges and opportunities around us wherever we find ourselves on the planet. Nonetheless there is political as well as scientific need in the 21st century for an inclusive biogeographical perspective on human diversity recognizing that we are a globally distributed species whose diversity is framed by isolation-by-distance constrained by our social, economic, and political networks, and whose impact on the environment and our own sustainability is substantial and critically in need of informed restructuring.

This is part 2 of a 3 part series at SCIENCE DIALOGUES.


GENETIC EVIDENCE BOTH MOLECULAR AND METRIC now supports instead two robust observations about the biogeography of our species. First, our global physical diversity is structured not by geographic isolation, but instead by isolation-by-distance constrained by social, economic, and political networks (e.g., Lao et al. 2008; see also below) and the specifics of local geography. Said less awkwardly, people as a rule are similar to those nearby and differ from those living farther away. Second, we are proficient at crossing the lines we draw between ourselves and others. Social, cultural, economic, and political barriers are only as real as we want to make them, and social realities are in constant flux and renegotiation (Bashkow 2004).

To infer, as Nicholas Wade and others have done, that we have normally lived in isolated tribal groups until quite recently—say, before globalization—resurrects what the anthropologist Alexander Lesser once dubbed the myth of the primitive isolate—the belief that there were savage tribes before and after 1492 that were circumscribed, timeless societies having few and mostly hostile dealings with one another (Lesser 1961; Lewis 2008; Vincent 2009).

Ethnic stereotypes

Fredrik Barth has remarked that practically all social science reasoning rests on the notion that there are discrete groups of people on earth that can be variously labeled as populations, ethnic groups, societies, cultures, or races (Barth 1969). This way of charting our diversity—commonly called typological or categorical thinking—takes it as self-evident that things naturally come in different kinds, or types, that may legitimately be labeled as such. From this perspective, the words we use to describe things are like empty containers into which we can put things once we have grasped the essential meaning of these verbal containers.

Bild aus Seite 541 in “Die Gartenlaube.” Image from page 541 of journal Die Gartenlaube, 1887. Source: http://commons.wikimedia.org/wiki/File:Die_Gartenlaube_(1887)_b_541_2.jpg

From this perspective, it would seem self-evident that different kinds of people live in different parts of the world. After all, who could possibly mistake an African for an Asian or someone of Irish descent? Nor is this just a Euro-American way of parsing real or assumed geographic variation within our species. The anthropologist James Watson reported half a century ago, for example, that people he knew well in the Eastern Highlands of New Guinea had no difficulty pointing out to him how they saw themselves as different from other people in neighboring places despite the fact that these many small communities were intermittently marked by relocations, realignments, and the patriation of immigrants who had been expelled by hostile neighbors from their own lands—so much so, Watson related, that “to the literal-minded genealogist, the long-term kinship and continuity of each such group seem confused, even compromised” (Watson 1990: 17). Yet despite the demographic instability of these communities, he found that people there were generally quite confident they could draw lines between themselves and others for “no matter how permeable their boundaries or how checkered the history of their membership, they will consider themselves and will be thought to be distinct ethnic units” (Watson 1990: 18).

Group selectionism

The belief that people come in recognizable different types, kinds, or races is often paired with the notion that we are inherently selfish, intolerant, and aggressive—in a word, that we are all bullies at birth needing years of nurturance to become kind and socially adept humans. In this vein, the biogeographer Edward O. Wilson has written that when asked if humans are innately aggressive, he replies: “This is a favorite question of college seminars and cocktail party conversations,” he writes, “and one that raises emotion in political ideologues of all stripes. The answer to it is yes.” (Wilson 1978: 99).

The Emin Pasha Relief Expedition under attack from an African natives. Source: https://commons.wikimedia.org/wiki/File:The_Emin_Pasha_Relief_Expedition_under_attack_Wellcome_L0034831.jpg

Recently Wilson underscored one of the major assertions behind this way of thinking about ourselves: that competition among groups rather than cooperation has been a powerful driving force behind the evolution of our species and our behavior as individuals. As Wilson has recently phrased the thought: “Our bloody nature, it can now be argued in the context of modern biology, is ingrained because group-versus-group was a principal driving force that made us what we are. . . . Each tribe knew with justification that if it was not armed and ready, its very existence was imperiled” (Wilson 2012: 62).

This is not the place to argue against such understandings of what it means to be human (Terrell 2014). Briefly put, as Robert Sussman has written: “To say that humans have a propensity for violence says nothing. We also have a propensity for nonviolence. In fact, the norm, or statistically more common behavior, within human groups is cooperation and among human groups is peace. Violence, both within and among societies, is statistically abnormal” (Sussman in: Fuentes et al. 2010).

Acknowledgments

I thank Eric Clark, Mark Golitko, John Hart, and Kevin Kelly for comments on the working draft.

References      § = suggested further reading

Banks, W. E. (2013). Review of Harcourt, Human biogeography. Quarterly Review of Biology 88, 39–40.

Barth, F. (1969). Introduction. In Barth, F. (ed.) Ethnic groups and boundaries: The social organization of culture difference, pp 9–38. Boston, MA: Little, Brown and Company.

Bashkow, I. (2004). A neo-Boasian conception of cultural boundaries. American Anthropologist 106, 443–458.

Caspari, R. (2003). From types to populations: A century of race, physical anthropology, and the American Anthropological Association. American Anthropologist 105, 65–76.

Castree, N. (2009). Charles Darwin and the geographers. Environment and Planning A 41, 2293–2298. §

Cox, C. B. and Moore, P. D. (2010). Biogeography: An ecological and evolutionary approach. 8th ed. Hoboken, NJ: John Wiley & Sons.

Elhaik, E., Tatarinova, T., Chebotarev, D. et al. (2014). Geographic population structure analysis of worldwide human populations infers their biogeographical origins. Nature Communications DOI: 10.1038/ncomms4513.

Fuentes, A., Marks, J., Ingold, T. et al. (2010). On nature and the human. American Anthropologist 112, 512–521.

Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology 78, 1360–1380. §

Harcourt, A. H. (2012). Human biogeography. Berkeley: University of California Press. §

Hart, J. P. (2012). Why we are what and where we are. Science 338, 330.

Hellenthal, G., Busby, G. B. J., Band, G. et al. (2014). A genetic atlas of human admixture history. Science 343, 747–751.

Kelly, K. M.  (2002). Population. In Hart, J. P. & Terrell, J. E. (eds.) Darwin and archaeology: A handbook of key concepts, pp 243–256. Westport, Ct: Bergin & Garvey. §

Kivelä, M., Arnaud-Haond, S. and Saramäki, J. (2015).  EDENetworks: A user-friendly software to build and analyse networks in biogeography, ecology and population genetics. Molecular Ecology Resources 15, 117–122.

Koelsch, W. A. (2004). Franz Boas, geographer, and the problem of disciplinary identity. Journal of the History of the Behavioral Sciences 40, 1–22.

Kolata, G. B. (1974). Human biogeography: Similarities between man and beast. Science 185, 134–135.

Laland, K. N. and O’Brien, M. J. (2011). Cultural niche construction: An introduction. Biological Theory 6, 191–202.

Lao, O., Lu, T. T., Nothnagel, M. et al. (2008). Correlation between genetic and geographic structure in Europe. Current Biology 18, 1241–1248.

Lesser, A. (1961). Social fields and the evolution of society. Southwestern Journal of Anthropology 17, 40-48. §

Lewis, H. S. (2008). Franz Boas: Boon or bane? Reviews in Anthropology 37, 169–200.

Odling-Smee, F. J., Laland, K. N. and Feldman, M. W. (2003). Niche construction. Princeton: Princeton University Press.

Radil, S. M., Flint, C. and Tita, G. E. (2010). Spatializing social networks: Using social network analysis to investigate geographies of gang rivalry, territoriality, and violence in Los Angeles. Annals of the Association of American Geographers 100, 307–326. §

Simon, H. A. (1973). The organization of complex systems. In Pattee, H. H. (ed.) Hierarchy theory: The challenge of complex systems, pp 1–27. New York: George Braziller.

Stocking, G. W., Jr (1987). Victorian anthropology. New York: Free Press.

Terrell, J. E. (1977a). Biology, biogeography and man. World Archaeology 8, 237–248.

Terrell, J. E. (1977b). Geographic systems and human diversity in the North Solomons. World Archaeology 9, 62–81.

Terrell, J. E. (1977c). Human biogeography in the Solomon Islands. Fieldiana: Anthropology 68, 1–47.

Terrell J. E. (2006). Human biogeography: Evidence of our place in nature. Journal of Biogeography 33, 2088–2098. §

Terrell, J. E. (2010a). Language and material culture on the Sepik coast of Papua New Guinea: Using social network analysis to simulate, graph, identify, and analyze social and cultural boundaries between communities. Journal of Island and Coastal Archaeology 5, 3–32.

Terrell, J. E. (2010b). Social network analysis of the genetic structure of Pacific Islanders. Annals of Human Genetics 74, 211–232. §

Terrell, J. E. (2014). A talent for friendship: Rediscovery of a remarkable trait. Oxford: Oxford University Press. §

Verdon, M. (2006). The world upside down: Boas, history, evolutionism, and science. History and Anthropology 17, 171–187.

Verdon, M. (2007). Franz Boas: Cultural history for the present, or obsolete natural history? Journal of the Royal Anthropological Institute (N.S.) 13, 433–451.

Vincent, J. (2009). Ahead of his time? Production and reception in the work of Alexander Lesser. American Ethnologist 15, 743–751.

Wade, N. (2014). A troublesome inheritance: Genes, race and human history. New York: Penguin Press.

Watson, J. B. (1990). Other people do other things: Lamarckian identities in Kainantu subdistrict, Papua New Guinea. In Linnekin, J. & Poyer, L. (eds.) Cultural identity and ethnicity in the Pacific, pp 17–41. Honolulu: University of Hawai‘i Press.

Wilson, E. O. (1978). On human nature. Cambridge, MA: Harvard University Press.

Wilson, E. O. (2012). The social conquest of the earth. New York: Liveright (a division of W. W. Norton).

© 2015 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Human biogeography 1. Historical rivals

John Edward Terrell


Please note: this commentary, recovered on 15-Jan-2017, was originally published in Science Dialogues on 28-Jan-2015.


Abstract – Human biogeography is not a thriving scientific enterprise. Why? In part because our species is remarkably talented at niche construction and highly inventive at adapting our socially learned ways of making a living and staying alive to meet the challenges and opportunities around us wherever we find ourselves on the planet. Nonetheless there is political as well as scientific need in the 21st century for an inclusive biogeographical perspective on human diversity recognizing that we are a globally distributed species whose diversity is framed by isolation-by-distance constrained by our social, economic, and political networks, and whose impact on the environment and our own sustainability is substantial and critically in need of informed restructuring.

This is part 1 or a 3 part series at SCIENCE DIALOGUES


THERE OUGHT TO BE A NICHE in the economy of evolutionary biology for a research specialization called human biogeography, but use any search engine you favor and these two words as your key terms. You will find that while human geography has existed long enough to give rise to many sub-specializations (Castree 2009), human biogeography does not exist as a thriving scholarly enterprise, has given rise to no subfields, and is rarely noted as a possible contender for competitive research funding. Why? There are several reasons for this apparent truancy in the academic arena as well as an important lesson to be drawn for evolutionary biology.

Historical rivals

While the roots of modern species biogeography date back into the 18th century and before (Cox and Moore 2010), it has been conventional in Euro-American circles to treat human beings as apart from and even above the natural world (e.g., accounts of Creation in the Hebrew Bible and the Christian Old Testament). Perhaps for this reason, diverse research specializations such as ethnology, anthropology, archaeology, sociology, geography, physical anthropology, and the like took hold in the 19th century and early lay claim to much, if not all, of that century’s growing information about our own species diversity in its several dimensions—biological, cultural, social, ecological, economic, and linguistic (Stocking 1987). It seems possible—although perhaps difficult to prove—that seeing global human biodiversity as comparable in interesting ways to the diversity, relative abundance, and spatiotemporal distributions of other life forms has generally not been deemed appropriate or worthy. Alternatively, it might be argued that human biogeography was being practiced at least in the 19th century, but under the labeling physical geography, anthropogeography, or Erdkunde (Koelsch 2004). Whatever the explanation, other sciences have largely preempted the stage when the biogeography of human diversity is given serious attention.

Nature and nurture

Human biogeography has not been successful at establishing itself in the academic arena and marketplace in part also because it became increasingly apparent during the 19th century that our species is remarkably talented—to use today’s terminology—at environmental niche construction (Odling-Smee et al. 2003) as well as strikingly inventive at adapting our socially learned (i.e., “cultural”) ways of making a living and staying alive to meet the challenges as well as the prospective opportunities around us wherever we have found ourselves on the planet (Laland and O’Brien 2011). Hence centering research exclusively on the biological, epidemiological, and ecological side of being human might be asking us to overlook many and possibly most of the probable reasons accounting for our presence and impacts on local and regional environments as well as the global biosphere.

Folk human biogeography

Despite the growing sophistication during the 19th century of scientific ways of studying and interpreting human diversity in its many dimensions, older commonsensical ways of understanding our global variation as a species continued to hold sway in the public arena (Lewis 2008). Many of these old ideas survived the 20th century (Caspari 2003) and remain popular today. Two notions, in particular, are often voiced although there is by now more than sufficient evidence to the contrary. The first is the belief that we are an inherently tribal species. The second is the conviction that we are by nature untrustworthy, self-centered, and prone to violence.

The anthropologist Gustaf Retzius at work between circa 1870 and 1890. Source: http://commons.wikimedia.org/wiki/File:Antropologen_Gustaf_Retzius_i_f%C3%A4rd_med_att_m%C3%A4ta_h%C3%A4rjedalssamen_Fjellstedts_huvud_-_Nordiska_Museet_-_NMA.0052720.jpg PD-1923

For example, Nicholas Wade recently insisted that after we began leaving Africa around 50,000 years ago and started colonizing the rest of the world, we subsequently evolved in isolation on each of the earth’s major continents into biologically distinct races, which both popular wisdom and Wade say are three or so in number (Africans, Asians, and Caucasians) because “human evolution has been recent, copious and regional” and these dispersing human pioneers broke up into small tribal groups as they spread out across the globe. “The mixing of genes between these little populations was probably very limited. Even if geography had not been a formidable barrier, the hunter-gatherer groups were territorial and mostly hostile to strangers” (Wade 2014: 78).

Such interpretations may be appealing in their simplicity, but they are more in keeping with folk wisdom than with available research findings.

Acknowledgments

I thank Eric Clark, Mark Golitko, John Hart, and Kevin Kelly for comments on the working draft.

References      § = suggested further reading

Banks, W. E. (2013). Review of Harcourt, Human biogeography. Quarterly Review of Biology 88, 39–40.

Barth, F. (1969). Introduction. In Barth, F. (ed.) Ethnic groups and boundaries: The social organization of culture difference, pp 9–38. Boston, MA: Little, Brown and Company.

Bashkow, I. (2004). A neo-Boasian conception of cultural boundaries. American Anthropologist 106, 443–458.

Caspari, R. (2003). From types to populations: A century of race, physical anthropology, and the American Anthropological Association. American Anthropologist 105, 65–76.

Castree, N. (2009). Charles Darwin and the geographers. Environment and Planning A 41, 2293–2298. §

Cox, C. B. and Moore, P. D. (2010). Biogeography: An ecological and evolutionary approach. 8th ed. Hoboken, NJ: John Wiley & Sons.

Elhaik, E., Tatarinova, T., Chebotarev, D. et al. (2014). Geographic population structure analysis of worldwide human populations infers their biogeographical origins. Nature Communications DOI: 10.1038/ncomms4513.

Fuentes, A., Marks, J., Ingold, T. et al. (2010). On nature and the human. American Anthropologist 112, 512–521.

Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology 78, 1360–1380. §

Harcourt, A. H. (2012). Human biogeography. Berkeley: University of California Press. §

Hart, J. P. (2012). Why we are what and where we are. Science 338, 330.

Hellenthal, G., Busby, G. B. J., Band, G. et al. (2014). A genetic atlas of human admixture history. Science 343, 747–751.

Kelly, K. M.  (2002). Population. In Hart, J. P. & Terrell, J. E. (eds.) Darwin and archaeology: A handbook of key concepts, pp 243–256. Westport, Ct: Bergin & Garvey. §

Kivelä, M., Arnaud-Haond, S. and Saramäki, J. (2015).  EDENetworks: A user-friendly software to build and analyse networks in biogeography, ecology and population genetics. Molecular Ecology Resources 15, 117–122.

Koelsch, W. A. (2004). Franz Boas, geographer, and the problem of disciplinary identity. Journal of the History of the Behavioral Sciences 40, 1–22.

Kolata, G. B. (1974). Human biogeography: Similarities between man and beast. Science 185, 134–135.

Laland, K. N. and O’Brien, M. J. (2011). Cultural niche construction: An introduction. Biological Theory 6, 191–202.

Lao, O., Lu, T. T., Nothnagel, M. et al. (2008). Correlation between genetic and geographic structure in Europe. Current Biology 18, 1241–1248.

Lesser, A. (1961). Social fields and the evolution of society. Southwestern Journal of Anthropology 17, 40-48. §

Lewis, H. S. (2008). Franz Boas: Boon or bane? Reviews in Anthropology 37, 169–200.

Odling-Smee, F. J., Laland, K. N. and Feldman, M. W. (2003). Niche construction. Princeton: Princeton University Press.

Radil, S. M., Flint, C. and Tita, G. E. (2010). Spatializing social networks: Using social network analysis to investigate geographies of gang rivalry, territoriality, and violence in Los Angeles. Annals of the Association of American Geographers 100, 307–326. §

Simon, H. A. (1973). The organization of complex systems. In Pattee, H. H. (ed.) Hierarchy theory: The challenge of complex systems, pp 1–27. New York: George Braziller.

Stocking, G. W., Jr (1987). Victorian anthropology. New York: Free Press.

Terrell, J. E. (1977a). Biology, biogeography and man. World Archaeology 8, 237–248.

Terrell, J. E. (1977b). Geographic systems and human diversity in the North Solomons. World Archaeology 9, 62–81.

Terrell, J. E. (1977c). Human biogeography in the Solomon Islands. Fieldiana: Anthropology 68, 1–47.

Terrell J. E. (2006). Human biogeography: Evidence of our place in nature. Journal of Biogeography 33, 2088–2098. §

Terrell, J. E. (2010a). Language and material culture on the Sepik coast of Papua New Guinea: Using social network analysis to simulate, graph, identify, and analyze social and cultural boundaries between communities. Journal of Island and Coastal Archaeology 5, 3–32.

Terrell, J. E. (2010b). Social network analysis of the genetic structure of Pacific Islanders. Annals of Human Genetics 74, 211–232. §

Terrell, J. E. (2014). A talent for friendship: Rediscovery of a remarkable trait. Oxford: Oxford University Press. §

Verdon, M. (2006). The world upside down: Boas, history, evolutionism, and science. History and Anthropology 17, 171–187.

Verdon, M. (2007). Franz Boas: Cultural history for the present, or obsolete natural history? Journal of the Royal Anthropological Institute (N.S.) 13, 433–451.

Vincent, J. (2009). Ahead of his time? Production and reception in the work of Alexander Lesser. American Ethnologist 15, 743–751.

Wade, N. (2014). A troublesome inheritance: Genes, race and human history. New York: Penguin Press.

Watson, J. B. (1990). Other people do other things: Lamarckian identities in Kainantu subdistrict, Papua New Guinea. In Linnekin, J. & Poyer, L. (eds.) Cultural identity and ethnicity in the Pacific, pp 17–41. Honolulu: University of Hawai‘i Press.

Wilson, E. O. (1978). On human nature. Cambridge, MA: Harvard University Press.

Wilson, E. O. (2012). The social conquest of the earth. New York: Liveright (a division of W. W. Norton).

© 2015 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.