Category Archives: COMMENTARIES

Phi (φ) of the Beholder

“Without mathematics there is no art.”
–Luca Pacioli

A commentary by Uliana Solovieva

Figure 1

Look at these two rectangles. Which one appeals to you?

Most people would readily agree that the left choice is somehow better. A new field of Neuroaesthetics, pioneered by Semir Zeki, has been busy understanding the mechanics of our gut feeling. It seems that inside the complex system, we call our brain, exists an autonomous math calculator. It sends signals to the brain when the art we view matches with intrinsic “pleasing” criteria. Such system is guided by the reward function of the internal model of the brain (Kawabata 2004:1700). This theory seems to downgrade us to mechanic calculating robots, but it can give us a new framework to understanding aesthetics. What I am arguing is that unnoticeably, mathematics guide our aesthetic appreciation of art, and the process by which artists create art.

The first obvious source of artistic appreciation is in the defined proportions/symmetry we see all around us. The internal OCD filter is satisfied when harmony is achieved. This phenomenon can be looked at through the lens of the golden ratio, famously utilized in the Fibonacci sequence. Under close observation, the golden ratio is found in the realistic art of Leonardo Da Vinci’s Vitruvian Man as well as surrealistic Salvador Dali’s Melting Clocks. Despite the obvious differences, both works of art are widely acknowledged as innately pleasing. By closely probing at these masterworks, math’s explanatory power can be traced in art as the source of aesthetic appreciation.

In discussion of art, one controversial issue has been the validity of art as a subjective experience. Some may readily challenge my stance by insisting a commonly accepted notion that “art is in the eye of the beholder.” However, new evidence suggests the underlying universality of art appreciation is based on math – symmetry and ratios. Mario Livio, in his article “Why Math Works” argues, “The universe has regularities, known as symmetries, that let physicists describe it mathematically. And no one knows why.” (Livio 2011:83). Most of us readily accept math’s power to explain fundamental properties of the universe, while art is left in the wishy-washy grey area of the human experience. Could these two seemingly incomparable subjects be treated as one? Let’s do so by returning to the rectangles from (Figure 1), Leonardo Da Vinci’s Vitruvian Man (Figure 2), and Salvador Dali’s Melting Clocks (Figure 3).

The key to unlocking this puzzle lies in mathematics of the golden ratio. It seems we are naturally predisposed to appreciate a ratio closest to 1.618033988749895… (Dense 2013:39) which is represented by phi (φ), a never ending and never repeating number. It has boggled the minds of people ever since Pythagoras discovered it in secrecy (Livio 2008:41). Look at the first rectangle in Figure 1 with sides 1.62 (length) to 1 (width). You are looking at the world’s most beautiful rectangle, called the golden rectangle. It needs no beauty pageants to be voted best, rather, it needs our brain circuitry to become so. Without the brain evolution handed down to us, there would be no aestheticians, no art critics, and no mathematicians. When the brain recognizes the golden mean, it activates reward pathways and we unnoticeably feel good and unconsciously ascribe the dopamine surge to the gut feeling “I like!”

Da Vinci’s Vitruvian Man (Figure 2) is the picture-perfect of all the perfect perfections of a perfect man. Da Vinci is said to have been inspired by the writing of the architect Vitruvius who once wondered what would a perfectly proportional human look like. Vitruvius suggested human proportions as a symbiosis between each constituent part of the body (Livio 2008:134). Ask any artist how to “properly” draw a human figure and you’ll get math – “Draw 8 heads horizontally, that’s your proportionate height. Legs will start on the “5th head” and it is also where hands end….” my art instructor would repeat time and time again. It becomes evident that the body’s proportionate relationship of each part to the other generates realistic proportions that we call beautiful. Moreover, just as our beautiful rectangle, humans are also quantified as beautiful within the frame of reference in accord to symmetry. Once again, it is all the working of golden ratio. Da Vinci shamelessly utilized these seemingly magical principles into the intricate layouts of his own artwork.

Leonardo Da Vinci’s Vitruvian Man
Figure 2

To understand the highly encompassing impact of φ in aesthetics, we must understand where it came from. Patterns are generated from sequences, and the Fibonacci pattern goes like this
1, 1, 2, 3, 5, 8, 13, 21, 34, 55…
This sequence is life’s way of generating φ! Adding up the previous two numbers together forms each consecutive number; then, by dividing current number by previous, we get fractions that inch up closer and closer to φ but never quite reach it 1/1, 2/1, 3/2, 5/3, 8/5, 13/8, 21/13… (Dense 2013:39).

With this pattern, a logarithmic spiral is generated in Figure 4, notice that parameters of each “box” making up the rectangle is in correspondence to the Fibonacci sequence numbers. The box in the center is 1:1, the next is 1:1, then 2:2, 3:3 and so on to create the good old golden rectangle.

Figure 4

With this groundwork, it becomes easy to see a connection between math in realistic art. However, what if I want to steer clear of obvious shapes and sizes, as in surrealism? That art style is known to disregard the boundaries of possibility and rely on the feelings, “pathos”, emotions of each viewer. Salvador Dali’s art demonstrates lack of required proportions, shadows, or concrete meaning that Da Vinci’s work exhibited. Did we finally hit the sweet spot of art containing no math backbone?

Figure 3

Not quite. Even though Dali, a master surrealist, seems unconcerned with the proper rules of symmetry and reality, in actuality tells us a hidden story of math through his Melting Clocks piece (Figure 3). Unintentional implicit use of the golden ratio in the creative process in Dali’s mind can be noticed by inserting a Fibonacci spiral over his masterpiece. It evidently lines up! Our eyes start from the brightest spot in the center and move to the left following the course of the tree and extending down to the clocks and completing the golden spiral in the anti-clock-wise fashion. Strangely once more, math seems to be underlying not only our aesthetic appreciation, but the way a painter paints. Could these algorithmic internalized calculations be present in all of us, secretly staging our actions since the day we can hold a paintbrush (pen/spatula/cup). Our brains are known to precisely calculate each movement when we take on even the simplest of tasks such as grabbing a cup of tea. Oh the intricacy of trajectories needed to move every muscle in perfect synchrony in order do it right. Could same or similar mechanisms lie in our understanding of art and the creation of art as a two-fold system, leading to the sense of aesthetic pleasure spiked with dopaminergic pathways and feel good vibes? It surely seems so.

Mario Livio’s remark of math having explanatory and predictive power stands clear to identify two opposite works of art – one realistic and one surrealistic – under the same umbrella of universal mathematical laws. These laws narrow the subjective ambiguity of human “liking” into a well-defined boundary. Dictated by the golden ratio φ in all things math – numbers, patterns and sequences act as the unconscious factors that choose what we do and do not like. This idea, can help you and any other folk looking to predict likability of a product. From artists to scientists, the mystery of the mystical aesthetic sense is no further than a math equation away,
as H.E. Huntley adds:

The description of this proportion as Golden or Divine is fitting perhaps because it is seen by many to open the door to a deeper understanding of beauty and spirituality in life. That’s an incredible role for one number to play, but then again this one number has played an incredible role in human history and the universe at large. (Huntley 1970:63)

Indeed, the golden ratio is referred to as a divine proportion found far beyond the properties of aesthetics: physicists find it in cosmic pulsars; botanists find it in growth patterns of leaves and biologists in the structure of DNA. Even though artworks of Dali and Da Vinci might not paint (no pun intended) the whole picture of how φ is found in every type of art. Nevertheless, they illustrate a microcosmic example of the role mathematics play in our internalized sense of beauty.

References
Livio, Mario. The golden ratio: The story of phi, the world’s most astonishing number. Broadway Books, 2008: 1-268.

Livio*, Mario. “Why math works.” Scientific American 305.2 (2011): 80-83.

Dence, Thomas. “SOME OLD AND NEW RESULTS FOR THE WORLD’S MOST FAMOUS SEQUENCE OF NUMBERS.” Journal of Applied Global Research 6.16 (2013): 38-43.

Kawabata, Hideaki, and Semir Zeki. “Neural correlates of beauty.” Journal of neurophysiology 91.4 (2004): 1699-1705.

Bielski, Carolyn. Beginning Art 1 Class. Lake Forest High School. Lake Forest, IL. September 2011. Keynote Address.

Huntley, H. E. The Divine Proportion: A Study in Mathematical Beauty. New York: Dover Publications, 1970. Print. 50-69.

Images found in:
“Leonardo’s Vitruvian Man.” The Vitruvian Man. Web. 28 Mar. 2016.

“15 Things You Didn’t Know About ‘The Persistence Of Memory'” Mental Floss. Web. 28 Mar. 2016.

“Lesson Plans Based on Movies & Film Clips!” Donald in Mathmagic Land. Web. 28 Mar. 2016.

Racism, science, and common sense

John Edward Terrell


Five ways to stop sounding like a racist if you aren’t one.

If you think racism isprejudice, discrimination, or antagonism directed against someone of a different race based on the belief that one’s own race is superior,” science has something surprising to tell you.


WHAT A DIFFERENCE A DECADE CAN MAKE. Back in 2006, Angela Davis remarked during a keynote address at the University of Wyoming honoring Martin Luther King Jr.’s birthday: “We have been basically persuaded that we should not talk about racism.”  Following the acquittal of George Zimmerman in the shooting death of African-American teen Trayvon Martin in 2013, the activist movement Black Lives Matter was born. Since then the issue of racism has been front and center in American politics. What remains elusive, however, is why racism however motivated finds such fertile ground in the human psyche.

The Earth is flat

Kyrie Irving, who plays basketball brilliantly for the Cleveland Cavaliers, made headlines in February 2017 for declaring boldly that the Earth is flat. He was perhaps pulling our collective leg.  His stated rationale, however, has more than a little bit of good old common sense to back it up:

“For what I’ve known for as many years and what I’ve come to believe, what I’ve been taught, is that the Earth is round,” he continued. “But if you really think about it from a landscape of the way we travel, the way we move, and the fact that—can you really think of us rotating around the sun and all planets aligned, rotating in specific dates, being perpendicular with what’s going on with these planets?”

Crazy thinking?  Maybe, but then what about this? A poll published two years ago by the U.S. National Science Foundation found that 26% of Americans don’t know that despite appearances to the contrary, the Sun does not go around the Earth.   Perhaps more astonishing, when asked, 52% of Americans evidently don’t agree with the statement that humans evolved from earlier animal species.

You don’t have to be Bill Nye or Neil deGrasse Tyson to see that all these instances of scientific ignorance make perfect sense from a common sense point of view despite being wrong. Furthermore, it wasn’t all that long ago most people on Earth in point of fact were misinformed in precisely these ways: yes, of course, the Earth is flat; yes, it is obvious that the Sun goes around the Earth; and haven’t you heard? Humans were created in their present form by a special act of Divine Will.

. . . and races are real

There are no polls I know of to back up the claim. Even so, it seems likely many people today—maybe even most—would also say they can’t possibly be at all racist because, don’t you know?, they don’t look down upon people in other races (see the dictionary definition reprinted above).

Editorial cartoon showing a Chinese man, surrounded by luggage labeled “Industry”, “Order”, “Sobriety”, and “Peace”, being excluded from entry to the “Golden Gate of Liberty”. The sign next to the iron door reads, “Notice—Communist, Nihilist, Socialist, Fenian & Hoodlum welcome. But no admittance to Chinamen.” At the bottom, the caption reads, “THE ONLY ONE BARRED OUT. Enlightened American Statesman—’We must draw the line somewhere, you know.'” 1882. Source: https://commons.wikimedia.org/wiki/File:The_only_one_barred_out_cph.3b48680.jpg. . . and races are real

This argument may be socially honorable, but if this is what many truly believe, then there are people who need to hear that just like the idea that the Earth is flat, so too, the notion that  human beings come in different kinds that can be labeled as “races” is just plain scientifically wrong.

As the anthropologist Jonathan Marks at the University of North Carolina – Charlotte and many others, too, have been saying for years, human genetic variation around the globe is real. But the same cannot be said for the commonsense claim that the Earth is peopled by separate and distinct human races.

As Marks has observed on numerous occasions, when we try to divide people up into different races, it’s not that we’re reading natural patterns of variation and simply extracting this idea from nature. Instead,

what we’re doing is we’re deciding that certain patterns of variation are less important than others, and certain patterns of variation are more important than others. We decide that the difference between a Norwegian and an Italian is not significant and so we’ll place them in the same category. And we decide that the difference between a Persian and a Somali is important; and so we’ll place them in different categories.

Sinner heal thyself

It is probably true that most human geneticists nowadays recognize that human beings don’t come in kinds—that is, races aren’t real. It is more than unfortunate, therefore, that geneticists today generally still don’t seem to know how to talk about human biological variation from place to place and down through time without using words—the term “population,” for example—that all too easily can mislead others less knowledgeable into believing science still endorses the old commonsense idea that human races exist in the real world to be embraced or savaged depending on one’s personal and moral proclivities.

No wonder, therefore, that dictionary definitions of racism (such as the one at the top of this commentary) can still make it sound like there is nothing wrong with the idea of race provided we don’t use this notion as an excuse for prejudice, discrimination, or antagonism.

The way forward

Most of us don’t believe the Earth is flat. Yet most of us live and act as if it were because this commonsense idea is a seemingly trivial lie that mostly works just fine in everyday life. Similarly, most of us may feel comfortable using the word race for the same reason. Truth be told, however, most of us also know the consequences of doing so can be deadly. Is there a way forward?

Here are 5 recommendations. They have been written specifically with geneticists in mind. But you don’t have to be a professional geneticist to add them to your own personal stock of “best practices.”

  1. Avoid whenever possible using facile concepts and terms such as ancestry, migration, and admixture when writing about human diversity.
  2. Abandon using the outdated concept of a “population,” and replace it with the statistician’s term “sample.”
  3. Stop writing about the “population structure” of this or that species, and instead report on their “genetic structure” as a species.
  4. Develop comparative databases documenting the genetic structure of other species to demonstrate publicly and repeatedly until the truth finally sinks in that geographic variation doesn’t have to be “racial” to be real.
  5. Create mathematical tools and network algorithms to use when mapping, analyzing, and reporting on the genetic structure of a species that unlike current methods (e.g., the popular computer program Structure) are non-categorical.

Coming soon: Tinker Tailor Soldier Ego Part 1: Freud is dead

John Edward Terrell and Gabriel Stowe Terrell


 EXPLORING THE LOST WORLD  ____________________________ _____________________________________  OF THE HUMAN BRAIN

FIRST THING WE NEED TO NOTE is that Freud is dead. No, we don’t mean the famous 20th century psychologist Sigmund Freud who died in 1939 at the beginning of World War II after struggling for years with cancer (Freud didn’t listen to his doctors, and he really, really liked to smoke cigars). We mean Freud’s way of thinking about how the brain works with the world popularly called Freudian psychoanalysis—although, yes, not every psychologist practicing today would agree with us that Freudian thinking is totally dead and buried.

Source: https://commons.wikimedia.org/wiki/File:Sigmund_Freud_LIFE.jpg

The psychologist and Nobel Laureate Eric Kandel observed in an insightful overview published 1999 that this remarkable man revolutionized our understanding of the human mind during the first half of the 20th century. Unfortunately, as Kandel goes on to say, during the second half of the last century Freudian psychoanalysis did not evolve scientifically. It did not develop objective methods for testing Freud’s excitingly original ideas. As a consequence, Kandel gloomily concluded in his benchmark essay, psychoanalysis entered the 21st century with its influence in decline.

With the passing of psychoanalysis as an instructive way of thinking about how your mind works, nothing comparable in its scope and helpfulness has taken its place, leaving most of us today without a workable framework for understanding ourselves and why we do what we do. As Kandel concluded in 1999: “This decline is regrettable, since psychoanalysis still represents the most coherent and intellectually satisfying view of the mind.”

More to come . . .

Racial migrations and human genetics: The “game changer” in the South Pacific that wasn’t – part 3

John Edward Terrell and Kevin M. Kelly


This is part 3 of a 3 part commentary


How many immigrants does it take to make a migration?

When presented with a sample comprising only 3+1 skulls, both scientific caution and parsimony suggest you should assume that colonists coming ashore back at the beginning of human history in Vanuatu and Tonga were probably more diverse, biologically speaking, than is witnessed by these four—at least until there is further evidence showing they did indeed come not just from a genetically homogeneous place of origin, but also a place where the inhabitants were as sui generis as they appear to be vis-à-vis others on earth (Skoglund et al. 2016: fig. 1b).

Logic such as this is well worth attending to. But in this instance, there is an equally logical way to get around the usual working assumption that people are likely to be more diverse than first appearances may suggest. Given how poorly specified are the two hypotheses under scrutiny here, it is anyone’s guess how big  we are supposed to think the boats must have been that brought early colonists to Vanuatu and Tonga around three thousand years ago. Even granting they may have arrived in more than one canoe, it would be reasonable to assume those arriving were fairly few in numbers. If so, then there is no need to assume blindly that those who came ashore in Vanuatu or Tonga constituted a representative (random) sample of the real human genetic diversity among those back home in the places where they came from, wherever on earth that was (Terrell 1986).

Furthermore, this is not all that might be reasonably assumed when trying to pin down the who, what, where, why, and when behind these four skulls. The number of pioneering colonists arriving  in canoes from elsewhere with them or before them may not only have been relatively few. They may also have been kin, i.e., biologically related to one another. If so, then possibly what makes these crania look sui generis in comparison with other people on earth, living and dead, may just be that we are seeing a “family resemblance” in these human remains (Terrell 1986; Walker and Hill 2014).

“Figure 1 New Guinea’s place in the southwestern Pacific (bathymetry downloaded from http://ingrid.ldeo.columbia.edu/SOURCES/ .WORLDBATH/.bath/based on the ETOPO5 5 · 5 min Navy data base).” Source: Terrell 2006: fig. 1
Homeward bound

For journalists and others, the real mystery of these remains, of course, is where these pioneers or their immediate forebears sailed from when they launched their boats to start a new life elsewhere. What is now known or can be reasonably assumed, therefore, about places to the west where they may have sailed from?

Until the Holocene stabilization of sea levels in the southwestern Pacific around 8,000–6,000 years ago, it is likely that much of the northern coastline of New Guinea was steep and uninviting of human settlement (as much of it still is today) except perhaps where favorable local circumstances may have at least temporarily trapped sediment in sandbars, coastal lagoons, and small river deltas. Little is currently known archaeologically about this coastline, which runs east-west for roughly 1,500 miles (2,400 km), and which would logically have been the most likely route between Asia and the farther reaches of the Pacific (Golitko et al. 2016). The best guess at the moment is that few people lived along this coast for the first 35,000–45,000 years of human history in the Pacific (Terrell 2006). In effect, earth and sea conspired to isolate New Guinea, like a sleeping giant, from frequent contact with islanders elsewhere both to the east in what is now popularly called Melanesia, and to the west in Island Southeast Asia (for biological support for this inference, see: Matisoo-Smith 2016: 391).

Following the Holocene stabilization of sea levels, however, coastal areas in Southeast Asia and the Pacific began to develop into rich floodplains, river deltas, and lagoons. By the mid Holocene, it is probable that people in the island realms to the east and west of New Guinea began to deal with one another back-and-forth more often as coastal people began to travel with greater reach along this immense island’s lengthy northern coastline (Torrence and Swadling 2008).

West meets East

Contrary to the notion that there are only two hypotheses about the prehistoric human settlement of the more remote islands in the Pacific east of New Guinea, there are numerous variants not only of those two old ideas but of others, too (for a recent review, see: Matisoo‐Smith 2016). Here we will introduce only one plausible reconstruction (Terrell, in press).

Initial baseline assumptions
  • Archaeologists now think people have been living in Southeast Asia for 50,000 years or so, and perhaps for not quite so long in the islands just east of New Guinea as far as Bougainville in the Northern Solomons.
  • The gradual flooding of the Sunda paleocontinent in what is now Southeast Asia since the Last Glacial Maximum ~21,000 years ago created extensive coastal environments that were ecologically rich and productive (Sathiamurthy and Voris 2006; Hanebuth et al. 2011: fig. 2). Similar extensive flooding did not occur in the area east of New Guinea labeled as Parkinson’s Islands (after the early ethnologist Richard Parkinson) on the map above (Lavery et al. 2016).
  • Due to this environmental advantage, it is probable that there were far more people living in Southeast Asia 6,000 years ago than there were in Parkinson’s Islands.
  • By the mid Holocene—contrary to the prevailing assumption in historical linguistics that doesn’t take this ecological advantage into consideration—it is probable that languages classifiable as Austronesian were widely spoken throughout Wallacea and elsewhere in Southeast Asia even as far north as Taiwan. But not yet in Parkinson’s Islands which had been isolated from Asia by the island of New Guinea.
  • Throughout the Late Pleistocene and early Holocene, Wallacea and Parkinson’s Islands were both areas of the Pacific where the advantages of travel by sea rather than by land nurtured the use of canoes and the development of local navigational methods and skills.
  • Canoes equipped with outriggers and sails were invented in Southeast Asia at some point in the Late Pleistocene or early Holocene. Simple dugout canoes remained the predominant boat type used for travel among coastal communities in Parkinson’s Islands.
Illustration taken from Labillardiere, (1800). Atlas pour servir a la relation du voyage de la recherche de la Perouse. Page Plate 43. Paris. Source: Labillardiere. (1800). Buka Island canoe (Solomon Islands) [digital image]. http://www.dspace.cam.ac.uk/handle/1810/239987 Modeling the relocation of immigrants from Wallacea
“The word proa comes from perahu, the word for “boat” in Malay.” Source: https://commons.wikimedia.org/wiki/File:Proa_(PSF).png
Modeling the relocation of immigrants from Wallacea
  1. A small Austronesian-speaking hamlet or village community left home for some particular local reason or reasons from somewhere in Wallacea—or possibly on the north coast of New Guinea—and made landfall in the Bismarck Archipelago.
  2. It is possible that wherever it was they came ashore, they arrived not as strangers but rather as old friends of some of the local people there in the Bismarcks (Terrell 2015).
  3. Among these immigrants were individuals skilled at pottery-making, and also skilled in the arts and rituals of building and sailing outrigger canoes with sails. Both of these technologies were new to the Bismarcks region. Moreover, such skills may not have arrived at the same time if travel back-and-forth between communities in Wallacea, northern New Guinea, and the Bismarcks became routine at least for awhile.
  4. The local people not only welcomed them, but often also acquired new ways of doing things—such as the art of pottery-making—from their immigrant neighbors, in some instances even their foreign language skills. The reverse may have also been true.
  5. Time passed, generations came and went. For now unknown reasons, it eventually became fashionable, prestigious, or perhaps even necessary for some people in the Bismarcks to set sail for islands yet farther to the south and east in the Pacific, although how many people in how many communities were involved, how often they sailed away, and for how many years this voyaging away from home in the Bismarcks went on are now all unknown and perhaps unknowable. 
  6. Even so, considering the passage of the time between (a) the first arrival of immigrants from the west and (b) the departure of some people generations later to settle down in other (more remote) places to the southeast, there is no reason to insist that these two separate episodes of human resettlement were similarly inspired or motivated (Walker and Hill 2014).
  7. Furthermore, given that both the voyaging technology and navigational skills required to colonize the more remote islands of the Pacific may have been available then only in some communities in the Bismarcks, it is not surprising that early settlers in Vanuatu, Tonga, and elsewhere had similar material culture traits (i.e., the so-called “Lapita cultural complex”).
Conclusions

Because the first immigrants who reached Vanuatu and Tonga were entering a vast and uninhabited part of the Pacific, it is probably not surprising that many nowadays have been seduced by the modern global distribution of Austronesian languages—from Madagascar to Rapa Nui (Easter Island) and from New Zealand to Taiwan—into thinking that such a vast geographic compass could only be the historical product of some kind of massive human migration that was singularly intentional and singularly premeditated from the very moment the first Austronesian-speaking immigrant stepped into the first canoe to sail from somewhere in island Southeast Asia  or on the north coast of New Guinea to the Bismarcks 3,000 and more years ago. It is wise to remember, therefore, that appearances can be deceiving.

Furthermore, today we know nothing about marriage (or sexual) practices in the Pacific in the prehistoric past. Although it is stating the case too simply, we do know that the basic building block of human genetic relatedness is the gene. Anyone who knows about the birds and the bees knows that genes can travel far and wide through sexual intercourse even if the people carrying them may only get as far away from home during their time on earth as the next village or two down the road. Consequently, there is no a priori reason to assume that race = language = culture. Or that genes necessarily traveled the Pacific millennia ago as the exclusive and enduring “property” of a massive and self-contained ethnic or ethnolinguistic migration that was able to keep its collective act together over thousands of miles and for hundreds, even thousands, of years. As some anthropologists like to say it, we need models of Pacific prehistory to work with that are “on the ground,” not “pie in the sky.”

Although we have been talking here almost exclusively about the Pacific Islands, the issue at stake is a global one. It is not just worrisome to find that even scientists may sometimes be unaware of the intellectual racism hidden in the conviction that the story of our species is a tale about ancestry, ancient migrations, and admixture. Commonsense ideas like these can be more than misleading. They can lend credence to other notions and old prejudices that can be harmful and sometimes deadly.  

Acknowledgments

We thank Ethan Cochrane, Mark Golitko, Tyrone Lavery, Lisa Matisoo-Smith, and Robin Torrence for assistance in the preparation of this 3-part commentary.

References

Bellwood, Peter. 2011. Holocene population history in the Pacific region as a model for worldwide food producer dispersals. Current Anthropology 52: S363–S378.

Gibbons, Ann. 1994. Genes point to a new identity for Pacific pioneers. Science 263: 32–33, p. 32.

Gibbons, Ann. 2001. The peopling of the Pacific. Science 291: 1735–1737.

Golitko, Mark, Ethan E. Cochrane, Esther M. Schechter, and Jason Kariwiga. 2016. Archaeological and Palaeoenviromental Investigations Near Aitape, Northern Papua New Guinea, 2014. Journal of Pacific Archaeology 7: 139–150.

Green, Roger C. 2003. The Lapita horizon and traditions – signature for one set of oceanic migrations. In C. Sand (ed.), Pacific Archaeology: Assessments and Prospects. Le Cahiers de l’Archéologie en Nouvelle-Calédonie 15. Nouméa: Service de Musées et du Patrimoine de Nouvelle-Calédonie, pp. 95-120.

Hanebuth, Till JJ, Harold K. Voris, Yusuke Yokoyama, Yoshiki Saito, and Jun’ichi Okuno. 2011. Formation and fate of sedimentary depocentres on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications. Earth-Science Reviews 104: 92-110.

Lavery, Tyrone H., Andrew D. Olds, Jennifer M. Seddon, and Luke K‐P. Leung. 2016. The mammals of northern Melanesia: speciation, ecology, and biogeography.” Mammal Review 46: 60–76.

Matisoo-Smith, Elizabeth A. 2016. Human biology and population histories in the Pacific–Is there such thing as a Lapita people?. In: The Routledge Handbook of Bioarchaeology in Southeast Asia and the Pacific Islands, edited by M. Oxenham and H. Buckley, pp. 389–408. Routledge, London.

Sathiamurthy, E. V. H. K., and Harold K. Voris. 2006. Maps of Holocene sea level transgression and submerged lakes on the Sunda Shelf. The Natural History Journal of Chulalongkorn University, Supplement 2: 1-43.

Skoglund, Pontus, Cosimo Posth, Kendra Sirak, Matthew Spriggs, Frederique Valentin, Stuart Bedford, Geoffrey R. Clark, et al. 2016. Genomic insights into the peopling of the Southwest Pacific. Nature 538: 510–513.

Specht, Jim, Tim Denham, James Goff, and John Edward Terrell. 2014. Deconstructing the Lapita cultural complex in the Bismarck Archipelago. Journal of Archaeological Research 22: 89-140.

Specht, Jim, Chris Gosden, Carol Lentfer, Geraldine Jacobsen, Peter J. Matthews, and Sue Lindsay. 2016. A pre-Lapita structure at Apalo, Arawe Islands, Papua New Guinea. The Journal of Island and Coastal Archaeology: 1-22.

Terrell, John. 1986. Causal pathways and causal processes: Studying the evolutionary prehistory of human diversity in language, customs, and biology. Journal of Anthropological Archaeology 5: 187-198.

Terrell, John Edward. 2006. Human biogeography: Evidence of our place in nature. Journal of Biogeography 33: 2088-2098.

Terrell, John Edward. 2015. A Talent for Friendship. Oxford University Press.

Terrell, John Edward. In press. Understanding Lapita as history. In Oxford Handbook of Prehistoric Oceania, edited by Ethan Cochrane and Terry Hunt. Oxford University Press.

Terrell, John Edward, John Edward, Terry L. Hunt, and Chris Gosden. 1997. The dimensions of social life in the Pacific: Human diversity and the myth of the primitive isolate. Current Anthropology 38: 155–195.

Terrell, John Edward, Kevin M. Kelly, and Paul Rainbird. 2001. Foregone conclusions: In search of “Austronesians” and “Papuans.” Current Anthropology 42: 97–124.

Torrence, Robin, and Pamela Swadling. 2008. Social networks and the spread of Lapita. Antiquity 82: 600–616.

Walker, Robert S., and Kim R. Hill. 2014. Causes, consequences, and kin bias of human group fissions. Human Nature 25: 465-475.

© 2017 John Edward Terrell and Kevin M. Kelly. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Racial migrations and human genetics: The “game changer” in the South Pacific that wasn’t – part 2

John Edward Terrell and Kevin M. Kelly


This is part 2 of a 3 part commentary


Necessary, plausible, and sufficient

Nobody, as far as we know, has come up with a universally accepted checklist of what makes a scientific hypothesis about anything something worth paying attention to. There are three criteria, however, that strike us as items that ought to be on such a checklist. Here is how we see these three applying to the conclusions now being made about the biological origins of the Polynesians.

Visualization by David Eccles of the two popularly assumed racial migrations from Asia out into the Pacific. Source: https://commons.wikimedia.org/wiki/File:Polynesian_Migration.svg
  1. Necessity: What needs to be explained? Both of the hypotheses weighed by the 31 contributors to the paper in Nature (Skoglund et al. 2016) under discussion here are alternative ways of trying to understand certain widely accepted observations about islanders in the Pacific: (a) people in Polynesia speak languages assigned by linguists to the Austronesian (Malayo-Polynesian) family, as do many people in Melanesia and Island Southeast Asia; (b) archaeologists now generally agree that what they have labeled the “Lapita cultural complex”* dating to ca 3300–2800 cal BP (Specht et al. 2016) exhibits a mix of cultural traits, some local to Melanesia and others apparently having roots to the west in Island Southeast Asia (Specht et al. 2014); and (c) the Lapita skulls found in Vanuatu and Tonga are morphologically and genetically sui generis (as the authors of this paper note, in some respects these four individuals are unique unto themselves).
  2. Plausibility: The two hypotheses considered by this consortium of scholars differ in their plausibility. (a) The idea that people traveled directly from Taiwan to Vanuatu and Tonga is basically impossible to assess given that nothing is said about how they might have done so—a striking omission considering the major dimensions of space and time involved. (b) The second hypothesis put on the table is similarly deficient, but it at least acknowledges that the set of material culture traits associated with the four Lapita skeletons in Vanuatu and Tonga wasn’t  imported in toto direct from Taiwan.
  3. Sufficiency: As Richard Levins observed years ago, truth is the intersection of independent lies. (a) Not only are the two hypotheses considered by this consortium of authors basically left unspecified, but (b) no reason is given for limiting the field of possible hypotheses solely to the two considered by these contributors.
The problem of equifinality

In light of #2 and #3 just noted, consider the old cliché “there is more than one way to skin a cat.” If you are a feline lover, there is even another way of saying more or less the same thing. As the biologist Ludwig von Bertalanffy made famous in the last century, you can call it equifinality. However phrased, it is wise to remember there is usually more than one way to get from A to Z, or even just A to B. The corollary relevant to the present discussion is that one cannot just assert that B came from A without offering a sufficient explanation for how that would have been possible. And more to the point, granting for the sake of discussion that B did somehow come from A, the scientific way of doing the job that needs to be done entails offering more than just 1–2 inadequately specified hypotheses.

The absence of evidence is not evidence of absence

According to these 31 authors: “our modelling indicates that Philippine populations (Kankanaey) are the closest outgroup to the First Remote Oceanians [i.e., these 4 skulls], indigenous Taiwanese (Atayal) second closest, and mainland southeast Asians such as the Dai most remote, consistent with models of population movement along a route from Taiwan to the Philippines to Near Oceania to Remote Oceania.” Maybe yes, maybe no.

Recall that only 14 of the 83 places in their modern comparative genetics sample are located in Island Southeast Asia, and none of the other 69 localities included in their analysis is in the region between the Philippines and northern New Guinea except for a single sample of 10 individuals from Sulawesi. Now look at a map of the region in question (see below).

“Figure 1 | Data from ancient and present-day populations. a, Locations of 778 present-day individuals genotyped on the Affymetrix Human Origins Array and 4 ancient individuals (red symbols).” Source: Skoglund et al. 2016: fig. 1a. Note: blue letters A and B added to the original.

Note two things, in particular. First, if it is true, as the song goes, that it’s a long, long way to Tipperary, then it is an even longer way from (A) Taiwan to (B) Tonga—more than 5,300 miles (8,500 km) in a straight line if a bee could fly that way that far. Second, notice the total lack of genetics samples from the big gap between the Philippines and the Bismarck Archipelago east of New Guinea (the few samples from New Guinea don’t count for reasons we will not go into here).

You don’t have to be a grumpy skeptic, therefore, to ask: if the four Lapita skulls from Vanuatu and Tonga look genetically most like people today in the Philippines, what about folks today, say, in the Moluccas and Halmahera off the Bird’s Head region of western New Guinea? And possibly also people living along  the north coast of New Guinea itself? Must we assume these four individuals from Vanuatu and Tonga somehow came all the way from Taiwan or the Philippines to come ashore there?[*]

Part 3: How many immigrants does it take to make a migration?


* The three skulls from Vanuatu were not found with the rest of their skeletons (Skoglund et al. 2016: supplementary notes). How they had been buried as well as their condition as skulls prior to burial suggest they had been cared for as portable heirlooms for an unknown period of time after death: “Ancient DNA was successfully obtained from three skulls from striking mortuary contexts: a jar burial containing a single skull (B17), an alignment of three skulls lying on the chest of a skeleton without a skull (B10B)”. There is a possibility that these individuals might have been long dead before their skulls arrived in Vanuatu. In contrast, with regard to the single individual from Tonga: “Ancient DNA was successfully obtained from the right petrous bone of burial SK10, a single primary interment of an adult female . . .”.


References

Bellwood, Peter. 2011. Holocene population history in the Pacific region as a model for worldwide food producer dispersals. Current Anthropology 52: S363–S378.

Gibbons, Ann. 1994. Genes point to a new identity for Pacific pioneers. Science 263: 32–33, p. 32.

Gibbons, Ann. 2001. The peopling of the Pacific. Science 291: 1735–1737.

Golitko, Mark, Ethan E. Cochrane, Esther M. Schechter, and Jason Kariwiga. 2016. Archaeological and Palaeoenviromental Investigations Near Aitape, Northern Papua New Guinea, 2014. Journal of Pacific Archaeology 7: 139–150.

Green, Roger C. 2003. The Lapita horizon and traditions – signature for one set of oceanic migrations. In C. Sand (ed.), Pacific Archaeology: Assessments and Prospects. Le Cahiers de l’Archéologie en Nouvelle-Calédonie 15. Nouméa: Service de Musées et du Patrimoine de Nouvelle-Calédonie, pp. 95-120.

Hanebuth, Till JJ, Harold K. Voris, Yusuke Yokoyama, Yoshiki Saito, and Jun’ichi Okuno. 2011. Formation and fate of sedimentary depocentres on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications. Earth-Science Reviews 104: 92-110.

Lavery, Tyrone H., Andrew D. Olds, Jennifer M. Seddon, and Luke K‐P. Leung. 2016. The mammals of northern Melanesia: speciation, ecology, and biogeography.” Mammal Review 46: 60–76.

Matisoo-Smith, Elizabeth A. 2016. Human biology and population histories in the Pacific–Is there such thing as a Lapita people?. In: The Routledge Handbook of Bioarchaeology in Southeast Asia and the Pacific Islands, edited by M. Oxenham and H. Buckley, pp. 389–408. Routledge, London.

Sathiamurthy, E. V. H. K., and Harold K. Voris. 2006. Maps of Holocene sea level transgression and submerged lakes on the Sunda Shelf. The Natural History Journal of Chulalongkorn University, Supplement 2: 1-43.

Skoglund, Pontus, Cosimo Posth, Kendra Sirak, Matthew Spriggs, Frederique Valentin, Stuart Bedford, Geoffrey R. Clark, et al. 2016. Genomic insights into the peopling of the Southwest Pacific. Nature 538: 510–513.

Specht, Jim, Tim Denham, James Goff, and John Edward Terrell. 2014. Deconstructing the Lapita cultural complex in the Bismarck Archipelago. Journal of Archaeological Research 22: 89-140.

Specht, Jim, Chris Gosden, Carol Lentfer, Geraldine Jacobsen, Peter J. Matthews, and Sue Lindsay. 2016. A pre-Lapita structure at Apalo, Arawe Islands, Papua New Guinea. The Journal of Island and Coastal Archaeology: 1-22.

Terrell, John. 1986. Causal pathways and causal processes: Studying the evolutionary prehistory of human diversity in language, customs, and biology. Journal of Anthropological Archaeology 5: 187-198.

Terrell, John Edward. 2006. Human biogeography: Evidence of our place in nature. Journal of Biogeography 33: 2088-2098.

Terrell, John Edward. 2015. A Talent for Friendship. Oxford University Press.

Terrell, John Edward. In press. Understanding Lapita as history. In Oxford Handbook of Prehistoric Oceania, edited by Ethan Cochrane and Terry Hunt. Oxford University Press.

Terrell, John Edward, John Edward, Terry L. Hunt, and Chris Gosden. 1997. The dimensions of social life in the Pacific: Human diversity and the myth of the primitive isolate. Current Anthropology 38: 155–195.

Terrell, John Edward, Kevin M. Kelly, and Paul Rainbird. 2001. Foregone conclusions: In search of “Austronesians” and “Papuans.” Current Anthropology 42: 97–124.

Torrence, Robin, and Pamela Swadling. 2008. Social networks and the spread of Lapita. Antiquity 82: 600–616.

Walker, Robert S., and Kim R. Hill. 2014. Causes, consequences, and kin bias of human group fissions. Human Nature 25: 465-475.

© 2017 John Edward Terrell and Kevin M. Kelly. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Racial migrations and human genetics: The “game changer” in the South Pacific that wasn’t – part 1

John Edward Terrell and Kevin M. Kelly


Here’s a hint about why scholars can be so captivated by what is basically an old-fashioned racial migration argument. They are apparently forgetting what they have been taught about the difference between a rhetorical argument and a scientific one.

The is part 1 of a 3 part commentary


THE IDEA THAT ONCE UPON A TIME the many islands of the South Pacific were colonized by different racial migrations out of Asia or the Americas (the latter a minority view) is as old as the hills. Or at any rate, at least as old as the earliest known encounters after 1492 between Europeans and the people living there.

1852 Bocage Map of Australia and Polynesia. The colored boundary lines show how this part of the world has long been subdivided into four cartographic regions labeled here as Malaisie (Malaysia), Micronesie (Micronesia), Polynesie (Polynesia), and Melanesie (Melanesia). Source: https://upload.wikimedia.org/wikipedia/commons/a/a2/1852_Bocage_Map_of_Australia_and_Polynesia_-_Geographicus_-_Oceanie-bocage-1852.jpg

The apparent remoteness and isolation of these islands and their inhabitants have long fueled the notion that here, if not necessarily elsewhere on earth, “race, language, and culture” all formerly tracked one another so closely that today, for instance, language differences can still be used successfully—and scientifically—not only to circumscribe and label separate “populations” in the Pacific (e.g., as different “ethnolinguistic groups,” ‘races,” and the like), but can also tell us how to reconstruct the prehistory and ancient migrations of separate and distinct “peoples” out into Oceania (Terrell et al. 1997).

It is generally considered impolite to say so, but the conventional word for this type of thinking is the word racism.

What seems astonishing is that racial thinking like this still frames how archaeologists, linguists, historians, social anthropologists, and human geneticists think about Pacific Islanders and write about their past. The most recent instance of this almost universal practice is possibly also the most revealing example of why otherwise informed scholars find themselves still under the spell of such an antiquated and unscientific idea.

Melanesians and Polynesians

As early as 1813 James Cowles Prichard was formally proposing—as others had earlier done more anecdotally—that the inhabitants of the Pacific Islands starting with New Guinea and neighboring places and moving on out eastward could be divided into “two principal classes.” In his own words (quoted in: Terrell et al. 2001):

The tribes which belong to the first of these are, strictly speaking, savages. They are universally in that rude unimproved state, which precedes all division of professions and employments. Consequently their political condition is that of perfect equality without any difference of ranks. Their physical character is of the rudest kind. Their form and complexion
approximate to those of the Negro.

Pritchard called these rude savages “the race of the Papuas.” Others would come to favor instead the term “Melanesians” (i.e., “black islanders”). He did not offer a name to use for the other—and supposedly superior—class of people except to say that such tribes were to be found in “the more distant regions of the Pacific Ocean.”

By 1843, his uncertainty about how to label the latter class of tribes had been resolved in favor of calling them “Malayo-Polynesians” since by then “a real kindred, or community of origin” had been established “by affinity of language” between islanders in Southeast Asia (i.e., “Malays”) and those in the more remote parts of Oceania, who were by then often labeled as Polynesians (i.e., “people of the many islands”).

Today the favorite label for the “affinity of language” noted by Pritchard and others in the 19th century between people in Polynesia and some of the inhabitants of Island Southeast Asia is the linguist’s label Austronesian.  Nowadays, too, those said to be in Pritchard’s so-called class of savages are generally called “Papuans,” although the label “Melanesians” is also still used by some.

Racial redux

Under the headline “‘Game-changing’ study suggests first Polynesians voyaged all the way from East Asia,” Ann Gibbons, a writer at Science magazine who had written previously about the origins of the Polynesians (Gibbons 1994, 2001), announced in surprisingly unqualified terms on 3 October 2016 that the identity of the first settlers of Polynesia was at last known, thanks to a paper then just published in Nature reporting on the first genome‑wide study of ancient DNA from  prehistoric Polynesians (Skoglund et al. 2016). Lo and behold, their ancestors were ancient East Asian mariners “who swept out into the Pacific. It wasn’t until much later that Melanesians, probably men, ventured out into Oceania and mixed with the Polynesians.”

To clinch the story, she then quotes experts who apparently ought to know what they are talking about.

“The paper is a game‑changer,” says Cristian Capelli, a population geneticist at the University of Oxford in the United Kingdom, noting that that it settles a decades‑long dispute. By showing that the East Asians hopscotched past islands already populated by Melanesians without picking up their genes, it is also a case study in how culture can initially bar mixing between groups. “Farmers move in and don’t mix much with the hunter‑ gatherers,” says evolutionary geneticist Mark Thomas of University College London. “We see this again and again and again” elsewhere in the world.

Not so fast

The late population geneticist and mathematical ecologist Richard Levins is famous in scientific circles for once having declared in no uncertain terms that “truth is the intersection of independent lies.’’  Given that what Gibbons, Capelli, and Thomas are saying is intellectually—if not necessarily politically—racist, why are they so confident? Particularly since the claim being endorsed is based on DNA extracted from only four skulls dating to around 3,000 or so years ago (three from Vanuatu, and one from the Tongan Islands) compared with the DNA of less than 800 present-day individuals from 83 places in Asia and Oceania.

To a cautious statistical mind, such figures ought to raise the worry that not enough is known about human genetic variation in this part of the world to warrant going far out on a limb by declaring resolutely that science has now told us not only where the ancestors of the Polynesians came from, but also how.

Add to this concern the additional information that all four of the women in the archaeological sample from the Pacific display their strongest apparent genetic ties with Taiwan—currently the most popular place to start the purported ancient migration to Polynesia—and with the Philippines.* Does a modern comparative DNA sampling of 778 individuals from 83 places in Asia and Oceania tell us enough about genetic similarities and differences throughout this immense region to overrule the reasonable doubt that linking the four prehistoric women with present-day people in Taiwan and the Philippines wasn’t exactly an unpredictable finding? Isn’t it reasonable to suspect this study might be biased, i.e., is an example of looking specifically for something—a genetic connection with Taiwan, in particular—where you most hope to find it?

Two alternative stories

The research report in Nature that Ann Gibbons wrote about in Science last October has 31 credited authors, a global mix of geneticists and archaeologists. Their report starts off with the assertion: “Pacific islanders today derive from a mixture of two highly divergent ancestral populations.” These authors then go on to tell us that there are two alternative stories—they call them hypotheses—about these two primal races (a word they do not use), and they say they now know which of the two to believe.

Both stories accept as true the unstated premise that biology, language, and culture co-vary closely with one another. The first story is an old tale still favored by some archaeologists (Bellwood 2011). If (a) race, language, and culture co-vary, and (b) Polynesians today speak languages of Southeast Asian origin (i.e., Austronesian, formerly called “Malayo-Polynesian”), then (c) it follows that the ancestors of the Polynesians came from Southeast Asia.  The second story is a more recent alternative reconstruction of Polynesian origins (Green 2003). If (a) race, language, and culture co-vary, and (b) the so-called “Lapita cultural complex” archaeologically associated with the first settlers of Polynesia is a cultural mix of Southeast Asian and Melanesian traits, then (c) the Polynesians racially must also be of similarly mixed biological origin.

Needless to say, these collaborators would not have written their report if they had found they couldn’t adjudicate the right choice between these two alternative stories. And they do not disappoint us: “Our study has shown that many of the first humans in Remote Oceania had little, if any, Papuan ancestry, in stark contrast [an odd choice of words?] to the situation today.” And if so, the second story evidently can’t be correct, right?

But this is not all they have to conclude. In their estimation: “Systematic study of ancient DNA from throughout Remote Oceania should make it possible to provide a detailed chronicle of the population movements and sex-biased population mixtures that shaped the ancestry of present-day Oceanians.”

Should we accept as true what they tell us? Is there a better way to think about what they report? In other words, what’s the chance they have been barking up the wrong stories altogether?

Part 2: Necessary, plausible, and sufficient


*  Only 14 of the 83 places in their comparative sample are located in Island Southeast Asia; 2 of these are on Taiwan and 6 in the Philippines. None of the other 69 localities is in the region between the Philippines and northern New Guinea except for a single sample of 10 individuals from Sulawesi. We return to these figures in Part 2 of this commentary.


References

Bellwood, Peter. 2011. Holocene population history in the Pacific region as a model for worldwide food producer dispersals. Current Anthropology 52: S363–S378.

Gibbons, Ann. 1994. Genes point to a new identity for Pacific pioneers. Science 263: 32–33, p. 32.

Gibbons, Ann. 2001. The peopling of the Pacific. Science 291: 1735–1737.

Golitko, Mark, Ethan E. Cochrane, Esther M. Schechter, and Jason Kariwiga. 2016. Archaeological and Palaeoenviromental Investigations Near Aitape, Northern Papua New Guinea, 2014. Journal of Pacific Archaeology 7: 139–150.

Green, Roger C. 2003. The Lapita horizon and traditions – signature for one set of oceanic migrations. In C. Sand (ed.), Pacific Archaeology: Assessments and Prospects. Le Cahiers de l’Archéologie en Nouvelle-Calédonie 15. Nouméa: Service de Musées et du Patrimoine de Nouvelle-Calédonie, pp. 95-120.

Hanebuth, Till JJ, Harold K. Voris, Yusuke Yokoyama, Yoshiki Saito, and Jun’ichi Okuno. 2011. Formation and fate of sedimentary depocentres on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications. Earth-Science Reviews 104: 92-110.

Lavery, Tyrone H., Andrew D. Olds, Jennifer M. Seddon, and Luke K‐P. Leung. 2016. The mammals of northern Melanesia: speciation, ecology, and biogeography.” Mammal Review 46: 60–76.

Matisoo-Smith, Elizabeth A. 2016. Human biology and population histories in the Pacific–Is there such thing as a Lapita people?. In: The Routledge Handbook of Bioarchaeology in Southeast Asia and the Pacific Islands, edited by M. Oxenham and H. Buckley, pp. 389–408. Routledge, London.

Sathiamurthy, E. V. H. K., and Harold K. Voris. 2006. Maps of Holocene sea level transgression and submerged lakes on the Sunda Shelf. The Natural History Journal of Chulalongkorn University, Supplement 2: 1-43.

Skoglund, Pontus, Cosimo Posth, Kendra Sirak, Matthew Spriggs, Frederique Valentin, Stuart Bedford, Geoffrey R. Clark, et al. 2016. Genomic insights into the peopling of the Southwest Pacific. Nature 538: 510–513.

Specht, Jim, Tim Denham, James Goff, and John Edward Terrell. 2014. Deconstructing the Lapita cultural complex in the Bismarck Archipelago. Journal of Archaeological Research 22: 89-140.

Specht, Jim, Chris Gosden, Carol Lentfer, Geraldine Jacobsen, Peter J. Matthews, and Sue Lindsay. 2016. A pre-Lapita structure at Apalo, Arawe Islands, Papua New Guinea. The Journal of Island and Coastal Archaeology: 1-22.

Terrell, John. 1986. Causal pathways and causal processes: Studying the evolutionary prehistory of human diversity in language, customs, and biology. Journal of Anthropological Archaeology 5: 187-198.

Terrell, John Edward. 2006. Human biogeography: Evidence of our place in nature. Journal of Biogeography 33: 2088-2098.

Terrell, John Edward. 2015. A Talent for Friendship. Oxford University Press.

Terrell, John Edward. In press. Understanding Lapita as history. In

Oxford Handbook of Prehistoric Oceania, edited by Ethan Cochrane and Terry Hunt. Oxford University Press.

Terrell, John Edward, John Edward, Terry L. Hunt, and Chris Gosden. 1997. The dimensions of social life in the Pacific: Human diversity and the myth of the primitive isolate. Current Anthropology 38: 155–195.

Terrell, John Edward, Kevin M. Kelly, and Paul Rainbird. 2001. Foregone conclusions: In search of “Austronesians” and “Papuans.” Current Anthropology 42: 97–124.

Torrence, Robin, and Pamela Swadling. 2008. Social networks and the spread of Lapita. Antiquity 82: 600–616.

Walker, Robert S., and Kim R. Hill. 2014. Causes, consequences, and kin bias of human group fissions. Human Nature 25: 465-475.

© 2017 John Edward Terrell and Kevin M. Kelly. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Challenging our assumptions about the antiquity of trade and social networks in Middle Stone Age Africa

Nature human behavior has just published a research highlight written John Carson about work at the Sibilo School Road Site in Kenya done by Nick Blegen, Harvard University, that has recovered large quantities of obsidian along with Middle Stone Age (MSA) tools . The finds are thought to date back at least 200 kyr.

As Carson summarizes: “Geochemical analyses demonstrated that the majority of obsidian pieces had their provenance at a source site >160 km away, indicating long-distance transport of raw materials during the MSA.” Previously, East African sites evidencing long-distance resource transport have all be less than <50 kyr old.

Evidently known MSA sites of this age are rare in East Africa. If more sites can be found and excavated, the “big story” usually told about the evolution of human social behavior may need updating: far-reaching resource networks and/or intergroup trade in raw materials could have developed earlier than generally believed in the history of our species. If so, then in Carson’s words: “we may gain greater insight into the timeline of social evolution that eventually led to our modern group behaviours.”

Blegen’s report was just published (unfortunately behind a paywall) in the Journal of Human Evolution. Here is the abstract you will find available there for free:

Abstract

This study presents the earliest evidence of long-distance obsidian transport at the ∼200 ka Sibilo School Road Site (SSRS), an early Middle Stone Age site in the Kapthurin Formation, Kenya. The later Middle Pleistocene of East Africa (130–400 ka) spans significant and interrelated behavioral and biological changes in human evolution including the first appearance of Homo sapiens. Despite the importance of the later Middle Pleistocene, there are relatively few archaeological sites in well-dated contexts (n < 10) that document hominin behavior from this time period. In particular, geochemically informed evidence of long-distance obsidian transport, important for investigating expansion of intergroup interactions in hominin evolution, is rare from the Middle Pleistocene record of Africa. The SSRS offers a unique contribution to this small but growing dataset. Tephrostratigraphic analysis of tuffs encasing the SSRS provides a minimum age of ∼200 ka for the site. Levallois points and methods of core preparation demonstrate characteristic Middle Stone Age lithic technologies present at the SSRS. A significant portion (43%) of the lithic assemblage is obsidian. The SSRS obsidian comes from three different sources located at distances of 25 km, 140 km and 166 km from the site. The majority of obsidian derives from the farthest source, 166 km to the south of the site. The SSRS thus provides important new evidence that long-distance raw material transport, and the expansion of hominin intergroup interactions that this entails, was a significant feature of hominin behavior ∼200 ka, the time of the first appearance of H. sapiens, and ∼150,000 years before similar behaviors were previously documented in the region.

© 2016 Elsevier Ltd. All rights reserved

Is archaeology a science? 3. Problem solving

John Edward Terrell


This is part 3 of a 3 part commentary


Storytelling

There is nothing inherently bad or wrong about telling stories. In truth, our brains are always telling ourselves stories about all sorts of things. For example, figuring out what you need to buy at the supermarket. Or when it would be OK to cross the street. Or why your boss should give you a promotion at work. In short, stories are not always fictional accounts. They can also be factual.

While the thought may sound strange at first, even scientists tell stories to themselves and others (Terrell 1990). In truth, storytelling can be a creative way for them to develop new ideas and plausible explanations, say, about  badly broken bones dug up at an archaeological site in Kenya—although instead of calling them stories, scientists would probably label them as hypotheses (see: fig. 2).

Figure 2. Science differs from other kinds of storytelling is a critical way. Changing (a) the evidence available, (b) the assumptions made about the world and how things work when interpreting that evidence, or (c) the interpretations made (i.e., the working hypotheses) can also change the other two dimensions of the scientific endeavor.
Darwin’s famous letter

In a famous letter to a colleague in 1861, Charles Darwin reflects on what it means to do science:

About 30 years ago there was much talk that Geologists ought only to observe & not theorise; & I well remember some one saying, that at this rate a man might as well go into a gravel-pit & count the pebbles & describe their colours. How odd it is that every one should not see that all observation must be for or against some view, if it is to be of any service.

People writing about how science is done love to quote these words because, as Michael Shermer, a columnist at Scientific American, remarked a number of years ago: “If scientific observations are to be of any use, they must be tested against a theory, hypothesis or model. The facts never just speak for themselves. They must be interpreted through the colored lenses of ideas: percepts need concepts.”

Boiled down to a few words, therefore, what both scientists and lawyers call evidence isn’t evidence until it can be pinned to convincing stories about it. Hence, viewed from Darwin’s perspective, Lahr and her colleagues had been tasked with a research assignment that was a lot like counting pebbles and describing their colors. This kind of Plug & Play task has long been commonplace in archaeology because accidental discoveries and nowadays cultural resource salvage work are routine in this scholarly arena. Being routine, however, does not make a research assignment science. As Darwin said, all observation must be for or against some view if it is to be of any service.

The major reason Plug & Play archaeology isn’t science is that stories (hypotheses) about things (evidence) must be for or against stories that are bigger—scientists call them concepts, theories, models, and the like— than the kinds of particular stories that get called hypotheses.[*] Or if you are a trial lawyer, criminal indictments.

Stories, big and small

If hypotheses are stories about particular situations and things, then what makes concepts, models, theories, and so forth bigger stories? Philosophers love to argue about the answer, but I am not a philosopher. I will give you the answer that makes sense to me. Instead of calling them concepts, theories, models, and so forth, just call them assumptions.

The 25 grand challenges to archaeology  noted earlier are grounded on so many assumptions about how the world works and what needs to be better known to do archaeology right in the future that one is left almost speechless. In a more constrained fashion, the stories Lahr and her colleagues tell us about bones from Kenya similarly make allusions to grand assumptions about what life was like during the early Holocene, about the inherent violence or pacifism of human nature, and so forth. In both cases, it seems clear that the persuasive goal in part is to justify doing archaeology by relating particular issues to broad, general assumptions (sometimes called themes) that are compelling and sometimes seemingly quite magnificent in their scope and assumed relevance to the human condition.

“What’s the problem?”

Evidence, hypotheses, assumptions . . .  how do these components of the scientific endeavor fit together (Fig. 2)? Again, philosophers of science love to debate such a question, but here is a hands-on way to resolve it. Ask the “So what?” question that kicked off this commentary in a different way, one that is not just being more polite. It is also a more meaningful way to get to the heart of the issue. Ask instead “What’s the problem here?”

Critics of archaeology, anthropology, and the social sciences generally are likely to fault these fields of scholarly expertise in one or both of two ways. One is methodological, and might be expressed using the old cliché “you can’t get there from here.” In a word, there is doubt about whether the social sciences are rigorous enough in their objectivity, verifiability, and generality to merit being called real science. The other is more elusive and judgmental. Is the problem being tackled by the research work in question really worth doing?

One way of trying to avoid being on the receiving end of this second kind of criticism is to make the purpose of what you are doing elusive. A common way of trying to accomplish this dubious end is to make grand allusions in the opening paragraphs of a research report to work previously published on the same or a comparable theme (concept, hypothesis, model, theory, etc.) and then move swiftly on to discuss methods & materials, analysis, and the like.

This popular avoidance tactic is unlikely to work, however, when the critic is someone like Lamar Smith.

The intersection of independent lies

In 1966 the late biologist Richard Levins published a short paper on the role of model building in population biology that is now a classic in the philosophy and practice of science. One of his observations back then has become famous: “truth is the intersection of independent lies.’’ As he explains, the human mind can only cope with a few variables at one time, and almost any plausible proposed relation among aspects of nature is likely to be true in the sense that it occurs (although rarely and slightly). “Yet all models leave out a lot and are in that sense false, incomplete, inadequate. The validation of a model is not that it is ‘true’ but that it generates good testable hypotheses relevant to important problems” (Levins 1966).

Forty years after this article was published, Levins felt called upon to explain himself anew. Here, in part, is what he wrote:

In the dispute about climate change, a rising temperature in several cities is suggestive. Adding more cities to the list gives a diminishing return. But independent lines of evidence—ocean temperatures, cores from glaciers, decline of coral reefs, spread of species into places that had been too cold for them, accumulation of greenhouse gasses—each may have some separate idiosyncratic explanation or source of error but jointly converge on an unavoidable conclusion. We have to seek lines of evidence as independent as we can in order to support a large scale conclusion. (Levins 2006)

In other words, to do great science, you have to do different things based on different ways of looking at the problem being studied.

As I have said before, there is no disputing taste, and what one person judges to be a problem in need of solving may be seen as less worthy, even trivial, by someone else. The least I can do is offer two examples with the understanding you may not see them as grand, and therefore, may not be impressed that archaeologists are attempting to tackle the problem being addressed.

Two archaeological challenges to conventional wisdom

While perhaps not a universal truth, many people will tell you in one way or another that human beings come in different and enduring kinds that can be labeled variously as communities, races, ethnic groups, populations, societies, or cultures (Terrell 2012). As I have noted elsewhere at SCIENCE DIALOGUES,  such thinking is the bedrock of racism and social conflicts around the world.

My archaeological colleague John P. Hart at the New York State Museum and I have separately looked at this undeniable problem using different archaeological and ethnographic material culture datasets from entirely different regions of the globe—in Hart’s studies, northeastern North America (e.g., Hart et al. 2016), and in my work, the Sepik coast of Papua New Guinea (e.g., Terrell 2010). Our goals, however, have been similar. We want to see if material culture studies support the notion—the popular conviction—that people come in discrete social and biological “kinds,” and if they do, how long-lived such fundamental building blocks of humanity may be.

As Hart and his colleagues recently reported, archaeological sequences based on pottery designs have often been used by scholars to identify ethnic ties among prehistoric settlements in eastern North America, and to hypothesize population movements over the landscape through time. Recent work by his research team using ceramic motifs and social network analysis challenges these conventional interpretations of the archaeological record and the principles underlying them. Network analysis of local and regional pottery design sequences, for example, suggests that rather than being ethnic markers, ceramic designs were used to signal inclusion in social and political networks crosscutting supposed ethnic and political boundaries in this part of North America. Moreover:

With a very robust archaeological record that has produced evidence for major shifts in settlement patterns, regional coalescences of village populations, changes in regional strife, and ultimately the development of confederacies, southern Ontario is an excellent area to investigate how signaling networks adapt as a result of socio-political and settlement system changes.

Similarly, work by myself and others on New Guinea’s northern Sepik coast since 1990 suggests that isolation by distance had led to some geographic patterning in cultural variation among communities on this coast prior to World War I. However, the patterning of similarities and differences in their material culture inventories offers little empirical support for the conventional assumption accepted by anthropologists, government officials, missionaries, and others that there is “a strong relation between language and material culture”  (Moore and Romney 1994) among villages communities in this part of the world. When seen in the broader perspectives of geography, human ecology, and time, as the old saying goes, appearances can be deceiving.

Conclusions

Science can be viewed as a continuous conversation among  evidence, hypotheses, and assumptions.  Some scientific conversations however ponderously expressed are trivial, merely chit-chat, so to speak. Other conversations are far more meaningful. If archaeologists want to be seen as substantial scholars and productive scientists, they have the same obligations all other scientists have. They must be clear and forthright about the problems they are addressing, and why those problems deserve the respect—and yes, the financial support—of others.

Grand challenges are inspirational, but they must be brought down to earth if what archaeologists dig up or study in museums is to add up to something worthwhile.


* As Richard Levins (2009: 744) has written, something is basically nonsense if it does not help us answer any questions other than about itself.


This is part 3 of a 3 part commentary

Acknowledgments

I thank John Hart for his help with this commentary.

References

Binford, Lewis R. 1962. Archaeology as anthropology. American Antiquity 28: 217-225.

Hart, John P., Termeh Shafie, Jennifer Birch, Susan Dermarkar, and Ronald F. Williamson. 2016. Nation building and social signaling in southern Ontario: AD 1350–1650. PloS One 11, no. 5: e0156178.

Jones, Sharyn. 2016. Anthropological archaeology in 2015: Entanglements, reflection, reevaluation, and archaeology beyond disciplinary boundaries. American Anthropologist 118: 301-316.

Kintigh, Keith W., Jeffrey H. Altschul, Mary C. Beaudry, Robert D. Drennan, Ann P. Kinzig, Timothy A. Kohler, W. Fredrick Limp et al. 2014a. Grand challenges for archaeology. Proceedings of the National Academy of Sciences 111: 879-880.

Kintigh, Keith W., Jeffrey H. Altschul, Mary C. Beaudry, Robert D. Drennan, Ann P. Kinzig, Timothy A. Kohler, W. Fredrick Limp, Herbert D. G. Maschner, William K. Michener, Timothy R. Pauketat, Peter Peregrine, Jeremy A. Sabloff, Tony J. Wilkinson, Henry T. Wright, and Melinda A. Zeder. 2014b. Grand challenges for archaeology. American Antiquity 79: 5-24.

Lahr, M. Mirazón, F. Rivera, R. K. Power, A. Mounier, B. Copsey, F. Crivellaro, J. E. Edung et al. 2016. Inter-group violence among early Holocene hunter-gatherers of West Turkana, Kenya. Nature 529: 394-398.

Levins, Richard. 1966. The strategy of model building in population biology. American Scientist 54:421–431.

Levins, Richard. 1993. A response to Orzack and Sober: formal analysis and the fluidity of science. Quarterly Review of Biology 68:547–555.

Mizoguchi, Koji. 2015. A future of archaeology. Antiquity 89: 12-22.

Moore, Carmella C., and A. Kimball Romney. 1994. Material culture, geographic propinquity, and linguistic affiliation on the North coast of New Guinea: A reanalysis of Welsch, Terrell, and Nadolski (1992). American Anthropologist 96: 370-396.

Terrell, John. 1990. Storytelling and prehistory. Archaeological Method and Theory 2: 1-29.

Terrell, John Edward. 2010. Language and material culture on the Sepik coast of Papua New Guinea: Using social network analysis to simulate, graph, identify, and analyze social and cultural boundaries between communities. Journal of Island & Coastal Archaeology 5: 3-32.

Terrell, John Edward. 2012. Polynesians and the seductive power of common sense. Cultural Geographies 20: 135–152.

Terrell, John, Hunt, Terry L., and Gosden, Chris. 1997. The dimensions of social life in the Pacific: Human diversity and the myth of the primitive isolate. Current Anthropology 37: 155-195.

Yu, Pei-Lin, Matthew Schmader, and James G. Enloe. 2015. “I’m the oldest new archaeologist in town”: The intellectual evolution of Lewis R. Binford. Journal of Anthropological Archaeology 38: 2-7.

© 2017 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Neuroscience, psychology, and the noble art of blog boxing

John Edward Terrell


Please note: this commentary, recovered on 3-Febr-2017, was originally published in Science Dialogues on 16-June-2014.


Abstract: According to some, the current debate in psychology about “direct replication” as a way of being vigilant against scientific fraud and sloppiness is devolving into a boxing match fostering snottiness, snark, and downright bullying. However, focusing on the downside of this call to arms may be sidetracking us from attending to a more fundamental question—when is research replication the right thing to do?

ONE OF THE THINGS I LEARNED while struggling to write a book  about friendship, human nature, and evolution is that neuroscience  and neurotic are not all that far apart. Before saying why I got this impression, however, I need to say something first about psychology today.

Late 19th century phrenological chart (source: http://thegraphicsfairy.com/vintage-clip-art-antique-phrenology-head/)

While reading journal articles garnered using Google Scholar I got the impression that different researchers working in different laboratories aided perhaps by different sorts of machinery are not only coming up with seemingly incompatible conclusions about how the human mind works (e.g., is there or isn’t there a lateral bias to creativity up there in the cranium?), but also that the left hand isn’t always aware of what the right hand is doing. Different research fiefdoms seem to be chugging along more or less unawares of how others are tackling the same issues. And I had the suspicion few are trying to replace the out-dated unity of wisdom of Sigmund Freud with anything approaching a holistic model of the mind. Why so, if this is true?

I am willing to admit my ignorance, but am I wrong to think experts in neuroscience nowadays are a lot like the famous blind men and the elephant? Each research team may have a firm grip on a piece of the puzzle, but does anyone really know how that beast called the brain actually works?

But wait a minute. What’s neurotic about the picture I am painting? A recent blog exchange between my friend Jim Coan at the University of Virginia and the anonymous science blogger Neuroskeptic has brought me some enlightenment on what sure seems like neuroticism to me.

According to Coan, there is currently a strong push within the field of neuroscience and psychology in general for something called “direct replication” (Klein et al. 2014)—a push that he finds both charming and naive. His real beef, however, is that some are taking this push to mean what might be called “replication failure” (my phrase, not Jim’s) is not just a worry confined (to succumb to a bit of word play) to the boudoir. Failure to replicate, real or perceived, evidently is giving rise to a rash of social nastiness he labels Negative Psychology that strikes me as being akin (or so it would seem) to the worst excesses of the post-modernist critique. “When we criticize each other using the tropes of Negative Psychology—that is, with moral outrage, hostile humor, and public shaming—we train the public to either disregard science altogether, or . . . to confuse outrage with rigor.”

While Coan points his finger as one case in point at Neuroskeptic anon., the latter in response has pleaded not guilty. In fact, Neuroskeptic anon. says he (or she) and Coan are on pretty much the same page and wavelength, and darnitall Jim would know this if he had bothered to read everything Neuroskeptic anon. has written in her (or his) blog over the years since ca. 2008.

I am not sure I should confess this, but I am not a great fan of blog sites. Until Jim’s entry into the fray (his first, by the way) I had paid scant attention to Neuorskeptic anon.’s corpus of writings on the web. Nor do I want to weigh in now as a qualified referee for minding the rules of the noble art of blog boxing. But I do agree with Coan on one thing.

He begins his own blog piece with this statement: “People on all sides of the recent push for direct replication—a push I find both charming and naive—are angry.” I think I know charm when I see it, and I don’t find much that is charming about what’s happening in the sciences of the psyche. But I do think the word naive is worth taking to heart.

According to some, skepticism is fashionable these days, and not just in psychology. One could argue, for example, that this is also a core tenet of climate-change deniers and the Tea Party in the U.S.A. Furthermore, who anywhere on earth could possibly deny that the replication of research results is the gold standard of scientific excellence?

Well maybe here and now and maybe me.

Perhaps more so than Jim Coan may be prepared to argue judging by his blog on Negative Psychology, I would at least like to cast a stone or two in that general direction. By focusing as he and Neuroskeptic anon. do on snark and snottiness at the core of modern skepticism in its many stripes, I think they may both be getting sidetracked from attending to a more central issue—namely why does anyone think research replication is such a good thing to do?

No doubt about it, failure to replicate research results may certainly be a flag on the field, but as Coan has said, anyone with a respectably nuanced view of why replications may fail knows they may do so for all kinds of reasons. What would be naive is to accept that not failing to replicate is proof of the pudding.

Why is this naive? Because doing the same thing over and over again in precisely the same way may amount to little more than making the same damn mistake over and over again–and thereby arriving at the same (erroneous) resolve over and over again. Said differently, direct replications that are just repetitions of the same-old same-old ought to be taken with a grain of salt and viewed with suspicion.

Now am I suggesting that like the United States in 1933 scientists should go off this gold standard? Maybe.

In 1966 the biologist Richard Levins published a paper on model building in population biology that has become a classic in the practice and philosophy of science (Levins 1966, 1993). I have long felt that Levins was leaning a lot on what Henri Poincaré (1905) and Alfred North Whitehead (1938) had written about such matters, and should have said so. Nonetheless, I am not alone in thinking what Levins wrote was inspirational and wise. And one of his main conclusions has become famous: “truth is the intersection of independent lies’’ (1966:423).

What he meant by this provocative statement has been richly discussed and debated (e.g., Levins 2006; Odenbaugh 2006; Orzack 2005;  Orzack and Sober 1993; Weisberg 2006a, 2006b). One of the pragmatic lessons, however, taken home after reading his paper (as indeed after reading Poincaré and Whitehead) is that for all sorts of reasons there is no such thing as the definitive single approach, experiment, or scientific model capable of capturing reality in all its chameleon-like complexity.

Therefore, as Levins wrote retrospectively in 2006, we need different ways of converging on the truths we are looking for. Consider this:

In the dispute about climate change, a rising temperature in several cities is suggestive. Adding more cities to the list gives a diminishing return. But independent lines of evidence—ocean temperatures, cores from glaciers, decline of coral reefs, spread of species into places that had been too cold for them, accumulation of greenhouse gasses—each may have some separate idiosyncratic explanation or source of error but jointly converge on an unavoidable conclusion. We have to seek lines of evidence as independent as we can in order to support a large scale conclusion. (Levins 2006:753)

Where am I going with this? The strategy Levins is talking about (as did Poincaré and Whitehead before him) is not the one at the heart of the current drive in psychology and other sciences to replicate evidently successful experiments others have done. No, instead the take-home directive is this one: Can we do a different experiment to see if we get the same resolve? And if not, why?

If this strategy were routine, then there would be no doubt about it. To repeat earlier experiments that led to different results if nothing else is a way to become more confident before making headlines with what we have just done that we have given others due and proper benefit of the doubt. But this wouldn’t be something that might be called “knee-jerk direct replication.” This instead would doing something called “just good science.”

References

Bohannon, J. 2014. Replication effort provokes praise—and “bullying” charges. Science 344:788–789.

Klein, R. A. Klein, K. A. Ratliff, M. Vianello, R. B. Adams Jr., Š. Bahník, et al. 2014.  Investigating variation in replicability: a ‘‘many labs’’ replication project. Social Psychology 45:142–152.

Levins, R. 1966. The strategy of model building in population biology. American Scientist 54:421–431.

Levins, R. 1993. A response to Orzack and Sober: formal analysis and the fluidity of science. Quarterly Review of Biology 68:547–555.

Orzack, S. H. and E. Sober. 1993. A critical assessment of Levins’s The strategy of model building in population biology (1966). 1993. Quarterly Review of Biology 68:533–546.

Odenbaugh, J. 2006. The strategy of ‘‘the strategy of model building
in population biology.’’  Biology and Philosophy 21:607–621.

Orzack, S. H. 2006. Discussion: what, if anything, Is “the strategy of model building in population biology?” A comment on Levins (1966) and Odenbaugh (2005). Philosophy of Science 72: 479–485.

Poincaré, H. 1905[1952]. Science and hypothesis, reprint ed. New York: Dover.

Weisberg, M. 2006a. Forty years of “the strategy”:  Levins on model building and idealization. Biology and Philosophy 21:623–645.

Weisberg, M. 2006b. Richard Levins’ philosophy of science. Biology and Philosophy 21:603–605.

Whitehead, A. N. 1938[1968]. Modes of thought, reprinted ed. New York: Free Press.

© 2014 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Is archaeology a science? 2. “Plug & Play” archaeology

John Edward Terrell


This is part 2 of a 3 part commentary


New and improved archaeology?

In 1962 the archaeologist Lewis R. Binford had an article published in the journal American Antiquity titled “Archaeology as anthropology”  that electrified the field of academic research into things ancient and not so ancient (Binford 1962). Many saw this paper as a call to turn away from just counting potsherds and pretending to write history toward doing real science in the realm of historical studies (Yu et al. 2015).

Nancy Stone and Lew Binford on an Acheulean site at Yediyapur in the Hunsgi Valley, South India, June 1986. Source: http://antiquity.ac.uk/tributes/binford.html

Since those halcyon days of the 1960s and what came to be called “processual archaeology,” professionals and amateurs alike have voiced strong doubts about whether archaeology is a science. Some have more or less utterly rejected Binford’s claim that archaeologists could be or should be scientists—an unwillingness to play along with Binford and those who would follow in his footsteps that, needless to say, plays right into the hands of someone like Congressman Lamar Smith (Jones 2016; Mizoguchi 2015).

Lewis Binford died in 2011. Despite his many naysayers, the archaeologist Mark Leone observed in a memorial appreciation of the man and his work published in the British journal Antiquity that Binford had unquestionably shown the rest of us “his astonishing capacity to connect archaeological things to the questions that mattered.”

Which raises an obvious concern. What kinds of questions might these be?

Ask no small questions

In 2012, a number of archaeologists, mostly Americans, decided they needed to come up with a list of questions for archaeologists to tackle in the years ahead. The resulting compendium, billed as “Grand challenges for archaeology,” was published in 2014 in the Proceedings of the National Academy of Sciences (PNAS) (Kintigh et al. 2014a).

“The challenges had to be, in principle,” they agreed, “susceptible to a solution supported by data.” In all they came up with 25 worthy concerns. Reading through the listing makes it clear they concluded no challenge too big was beyond the scope of archaeology. Borrowing words from their published report:

These challenges focus on understanding the dynamics of cultural processes and the operation of coupled human and natural systems, recognizing that humans—mediated by culture—both affect and are affected by their natural environments. The challenges addressed questions of emergence, complexity, demography, mobility, identity, resilience, and human–environment interactions. There is a notable lack of concern with the earliest, the largest, and the otherwise unique.

What sorts of challenges are among the 25 listed? They are grouped into five separate categories labeled A–D. Here is a selection of five, one drawn from each category. Keep in mind as you read through them that these five are alike said to be within the reasonable pursue of archaeologists working as archaeologists.

A.7:  What is the role of conflict—both internal factional violence and external warfare—in the evolution of complex cultural formations?

B. 4:  How does ideology structure economic, political, and ritual systems?

C.1:  What processes led to, and resulted from, the global dispersal of modern humans?

D.2:  How do people form identities, and what are the aggregate long-term and large-scale effects of these processes?

E.7:  How do humans perceive and react to changes in climate and the natural environment over short- and long-terms?

What seems most astonishing about these five and the remaining 20 others is that none of these identified challenges said to be of global significance is accompanied by clear statements—specific research hypotheses—that might be taken to be unambiguously testable using archaeologically recovered empirical data. Not one. Yet the claim is made, nonetheless, that

the facts of the past provide the evidence that is essential to confront all of these questions. We harbor no illusions about the difficulties of addressing these classes of problems. Rather, we share a conviction that these are the domains in which the most important problems reside.

These scholars note at the end of their PNAS commentary that they have made a longer version of their collective statement available in American Antiquity (Kintigh et al. 2014b). However, whether what they outline there in more detail would satisfy Congressman Smith is questionable. With regard to challenge A.7, for example, they say:

Exploring the dialectical relationship between conflict and complex cultural formations will undoubtedly foster new approaches to the archaeological record. Conflict is notoriously difficult to identify and quantify through archaeological remains. Though some methods have been developed, more systematic and large-scale analyses are certainly necessary before this question can be thoroughly explored. These methods will involve innovations in osteology and molecular anthropology, as well as advances in comparative studies of material culture and technology.

Plug & Play archaeology

You don’t need to be as skeptical nor as dismissive as Lamar Smith to wonder what these experts have in mind to do in the years ahead to give substance to their 25 grand challenges. Being neither clairvoyant nor a mind-reader, the best anyone else can do is suggest what might or might not fit the bill—if not for Lamar Smith, at least for others.

First, therefore, what wouldn’t meet these challenges? There are many possible ways to answer such a provocative  question. Here is one. Archaeologists should avoid doing Plug & Play archaeology (fig. 1). What does my pairing of these two words refer to? Here is an example.

Figure 1. Source: the author

In January 2016 Marta Lahr at Cambridge University and her colleagues made the cover of the prestigious science journal Nature with a detailed report on human remains dating back about 10,000 years to the early Holocene that had been excavated at Nataruk in northern Kenya (Lahr et al. 2016). Some of the skeletons recovered have traumatic lesions suggesting the probable cause of death (see: fig. 1, left). Not surprisingly perhaps, given this seemingly gruesome physical testimony, Lahr and her co-authors inferred that they had in hand evidence of inter-group violence against people who, given the antiquity of the remains, were probably wandering hunter-gatherers rather than settled agriculturalists.

Now if you were Lamar Smith you might be asking yourself right now “So what?” At the close of their Nature report, Lahr and her colleagues acknowledge directly that the apparent violence attested at Nataruk might be an “ephemeral, but perhaps not unusual, event in the life of prehistoric foraging societies.” Before then in their report, however, and certainly in the press coverage around the world that this report quickly received, what is featured are possible stories about interpersonal violence that could be told given such ancient cold-case injuries.

Both in their report in Nature and in subsequent popular accounts, the central claim made is that these scholars have caught humanity red-handed doing something fundamental—and nasty—long ago strongly hinting that violence is, as many still popularly assume, one of the defining characteristics of our species.

Here is where plug & play come into operation. All that it takes to reach this kind of conclusion about ourselves as human beings is evidence such as these fossil bones (fig. 1, left), a few seemingly reasonable assumptions about human nature (fig. 1, center), and before you know it, you have a story to tell (fig. 1, right).

In fairness, it must be said that at the end their report, Lahr and her co-authors do comment that Nataruk may be showing us little more than “a standard antagonistic response to an encounter between two social groups.” But then why write about these bones, and why feature them on the cover of Nature?

There is no disputing taste, and these authors have clearly done a good job of coming up with what might be said about these prehistoric finds. But “plugging” them into an interpretation—into a story—however appealing is not what STEM education is all about, and surely not what someone like Lamar Smith would take to be real science. It may be true, as these authors conclude at the very end of their report in Nature, that “the deaths at Nataruk are testimony to the antiquity of inter-group violence and war.” So what?

But if not Plug & Play archaeology, then what?

Part 3: Problem solving 

References

Binford, Lewis R. 1962. Archaeology as anthropology. American Antiquity 28: 217-225.

Hart, John P., Termeh Shafie, Jennifer Birch, Susan Dermarkar, and Ronald F. Williamson. 2016. Nation building and social signaling in southern Ontario: AD 1350–1650. PloS One 11, no. 5: e0156178.

Jones, Sharyn. 2016. Anthropological archaeology in 2015: Entanglements, reflection, reevaluation, and archaeology beyond disciplinary boundaries. American Anthropologist 118: 301-316.

Kintigh, Keith W., Jeffrey H. Altschul, Mary C. Beaudry, Robert D. Drennan, Ann P. Kinzig, Timothy A. Kohler, W. Fredrick Limp et al. 2014a. Grand challenges for archaeology. Proceedings of the National Academy of Sciences 111: 879-880.

Kintigh, Keith W., Jeffrey H. Altschul, Mary C. Beaudry, Robert D. Drennan, Ann P. Kinzig, Timothy A. Kohler, W. Fredrick Limp, Herbert D. G. Maschner, William K. Michener, Timothy R. Pauketat, Peter Peregrine, Jeremy A. Sabloff, Tony J. Wilkinson, Henry T. Wright, and Melinda A. Zeder. 2014b. Grand challenges for archaeology. American Antiquity 79: 5-24.

Lahr, M. Mirazón, F. Rivera, R. K. Power, A. Mounier, B. Copsey, F. Crivellaro, J. E. Edung et al. 2016. Inter-group violence among early Holocene hunter-gatherers of West Turkana, Kenya. Nature 529: 394-398.

Levins, Richard. 1966. The strategy of model building in population biology. American Scientist 54:421–431.

Levins, Richard. 1993. A response to Orzack and Sober: formal analysis and the fluidity of science. Quarterly Review of Biology 68:547–555.

Mizoguchi, Koji. 2015. A future of archaeology. Antiquity 89: 12-22.

Moore, Carmella C., and A. Kimball Romney. 1994. Material culture, geographic propinquity, and linguistic affiliation on the North coast of New Guinea: A reanalysis of Welsch, Terrell, and Nadolski (1992). American Anthropologist 96: 370-396.

Terrell, John. 1990. Storytelling and prehistory. Archaeological Method and Theory 2: 1-29.

Terrell, John Edward. 2010. Language and material culture on the Sepik coast of Papua New Guinea: Using social network analysis to simulate, graph, identify, and analyze social and cultural boundaries between communities. Journal of Island & Coastal Archaeology 5: 3-32.

Terrell, John Edward. 2012. Polynesians and the seductive
power of common sense. Cultural Geographies 20: 135–152.

Terrell, John, Hunt, Terry L., and Gosden, Chris. 1997. The dimensions of social life in the Pacific: Human diversity and the myth of the primitive isolate. Current Anthropology 37: 155-195.

Yu, Pei-Lin, Matthew Schmader, and James G. Enloe. 2015. “I’m the oldest new archaeologist in town”: The intellectual evolution of Lewis R. Binford. Journal of Anthropological Archaeology 38: 2-7.

© 2017 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.