Elements of Dynamic Network Analysis: 3. Connecting the dots


John Terrell

Categorical thinking, which I wrote about in the first two posts in this series, may at times be too pat for our own good, but this pragmatic (although potentially knee-jerk) way of dealing with things, people, and events is rarely based solely on nonsense.

Old-fashioned library card catalog [https://www.flickr.com/photos/mamsy/ [CC BY 2.0 (https://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons]
Why not? Because the world is not an entirely unpredictable place. What happens to us, good or bad, is seldom purely random or plain crazy.  Life actually does have patterns that can be real enough, although they can also be far from  clear-cut and hard to see. Even so, patterns can be categorized. Not always successfully (just ask any weather forecaster), but that doesn’t mean we shouldn’t try to do so.

But this is enough about categorical thinking for now. I want to move on and write instead about what I have previously referred to as relational thinking.

Relational thinking

The National Council of Teachers of Mathematics defines this way of thinking as the “mindful application of place value and the properties of number, operations, and equality in solving mathematics problems.” If this confuses you as much as it does me, note this organization adds: “A student with a disposition toward relational thinking has a habit of thinking before acting.”

This seems like an uncommonly low bar. Certainly not the definition I have in mind. Nature‘s online magazine Science of Learning offers an alternative: “At the core of all human learning and  performance  . . .  is the foundational ability to perceive patterns that thread through all of nature, including human nature.”

This isn’t quite it, either. In fact, to me this sounds more like a definition of categorical thinking. So let me give you my own take on what pairing these two words together means:

Categorical thinking assumes that things exist apart from one another, and may then become connected with one another.  

Relational thinking assumes instead that things exist because they are connected.

If my definition sounds too mystical to you, let me offer you several examples of what I mean.

One-sided relationships

It seems likely that no relationship is solely one-sided if looked at closely enough. While granting this likelihood, there is no doubt that relationships can be so out of balance that it is not just a technicality that one side is more influential than the other. Critically, the character and perhaps the very existence of one side in such an imbalanced relationship may depend, maybe entirely, on the relationship it has with the other side.

A classic example of such a one-sided connection is the relationship between the Sun in our solar system and all the other planets (and then some) revolving around it, including Planet Earth.

Even without venturing into the exotic realm of modern cosmological theories about quantum gravity, it is obvious enough nowadays except perhaps to those who believe the Earth truly is flat that if it were not for the gravitational relationship between the planets and our Sun, the Earth would not exist at all and neither would we. Our reliance on the Sun is that one-sided and decisive. There would also be no life at all on our planet without the Sun serving as life’s ultimate source of energy, however otherworldly such a statement may sound.

Technical note: In formal network analysis, a relationship between two things (the two nodes or vertices in the relationship) is said to be dyadic (two-sided). When both are taken together, they are called a dyad. Furthermore, such two-party connections can be either undirected (more or less balanced or symmetrical from the point of view of each), or they can be directed (each party has a different take on the relationship). From this perspective, the relationship between the Earth and the Sun is a directed dyadic relationship, and it is a relationship that is decidedly one-sided.

Photo via Good Free Photos
Two-sided relationshps

It has been said that human beings have an innate sense of fairness and an ingrained willingness to do something for others when they are reasonably confident that a favor, whatever it is, will be returned, if not in kind, at least in some other way having equal value.

This judgment of our willingness to engage with others in two-sided relationships is far too cynical. Available evidence suggests instead that most of us are basically predisposed to be kind, collaborative, and helpful to others. That’s how we have evolved as a social species.

Moreover, humans as a rule are not only ready, willing, and able to forge and maintain relationships with others. We are also remarkably skilled at coming up with playful excuses to do so.

Although jogging, bicycling, and other forms of exercise, for instance, can be done easily enough as solitary tasks, people often find ways of turning even such seemingly self-centered healthy activities into broadly social occasions.

Although a more sedentary activity than a physically healthful one, this observation holds true also for online computer gaming, which is now a major leisure-time social activity for millions around the globe.

Technical note: A racket sport such as tennis is an example of an undirected dyadic relationship (accepting, of course, that only one of the players can win). Yet tennis is also a spectator sport, and as such, creates a directed dyadic relationship between sports fans and players.

[https://es.wikipedia.org/wiki/Archivo:Thomaz_Bellucci_perde_para_o_espanhol_Rafael_Nadal_(28655795630).jpg]
Many-sided relationships

It is obvious enough that spectator sports such as tennis or baseball involve more than just simple dyadic relationships between players and spectators. The social complexity of team sports is even more apparent for sports such as soccer and football that call for the coordination of players both within and between the two opposing teams on the field.

A friend in need, 1903 [Public domain, via Wikimedia Commons].

Side note: There seem to be few team sports that call for more than two teams on the playing field at the same time—maybe they should be called “dyadic sports”—although a few examples do come to mind if you are willing to bend the definition of what is a sport: many kinds of card games, many types of board games, some varieties of billiards, some forms of bicycle racing, etc. 

But the many-sided complexity of most human relationships isn’t just obvious while watching  players interact with one another on a playing field. The general complexity of human relationships is more than apparent also among the fans watching the game being played right there before their eyes. Indeed, in the case of some sports, it could  be argued that “most of the action” is actually in the bleachers, not down on field. (You may be able to tell I don’t like baseball, and I am not too fond of football, either.)

Tim Beckham, catcher John Hicks, umpire Roberto Ortiz in a 2017 game [Keith Allison from Hanover, MD, USA (Tim Beckham) [CC BY-SA 2.0 (https://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons
How can we tackle the complexity of human relationships?

Classic definitions of social network analysis as a way of coming to grips with the complexity of human social relationships commonly read like this one from John Scott’s highly successful book Social Network Analysis: A Handbook: “social network analysis is an orientation towards the social world that inheres in a particular set of methods. It is not a specific body of formal or substantive theory” (page 37, 2nd ed., Sage Publications, 2000).

I find such a view naive, however well-intentioned. It is quite impossible to isolate methods from theories and then claim to be doing good science. This is an observation I will explore further in the next posting in this series.

This is Part 3 of a continuing series of posts on dynamic network analysis. Next up: 4. Exploring the 5th dimension.

 

© 2018 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Elements of Dynamic Network Analysis: 2. Relativity


John Terrell

In the inaugural posting in this series, I made note of the fact that history shows us time and again that as a species we have decided strengths and obvious weaknesses.

Why it’s good to be human

On the plus side, our kind of animal is outstanding at reshaping and rebuilding the world around us to make the challenges we face as individuals and as a species as humdrum, predictable, and hence as manageable as possible.

Poets, playwrights, philosophers, and scientists may debate the particulars of human motives and intentions, but there is no denying one of the reasons we spend so much time and effort at redoing the conditions under which we live out our days on earth. The more predictable a situation or event is, the easier it is for our brain to cope with it. And if need be, respond more or less appropriately.

Spice Bazaar, Istanbul [personal photograph]
I also argued in the previous post that to avoid becoming overwhelmed by what our body’s senses—classically said to be five in number—are telling us about the state of things and events both inside and outside our skin, our brain ignores much of what it is being told. Instead it mostly relies on the pragmatic strategy of simplifying what it is hearing, both literally and figuratively, by mentally putting things, people, and experiences into separate and seemingly distinct mind boxes—into different categories.

[https://www.publicdomainpictures.net/en/view-image.php?image=194409&picture=the-three-bears]
However, there is a fine line between paying too much attention to what our senses are telling us, and too little. (I like to call this the Goldilocks Line after the 19th century children’s story). Failing to pay sufficient attention to what’s happening inside or outside our body can be disastrous, as anyone who has survived the experience can tell us about why they shouldn’t have been texting while driving.

Why it’s bad to be human

As my mother so often liked to say, things can be both good and bad at the same time. However pragmatic and unintentionally self-centered we are as individuals for understandable evolutionary and psychological reasons, the dark side of our human ways cannot be denied.

I wasn’t being cynical in the previous post, therefore, when I remarked that truth may not be as appealing and important—that is, as useful—to us as human beings as the immediate and pragmatic benefits of things and events (and people, too) that are easy, convenient, and predictable.

However, taking the easy way out, the easy answer, the easy job, and so forth can be costly down the road—sometimes sooner rather than later. Doing so can make it difficult for us to notice and pay enough attention to how things, people, and experiences are linked, intertwined, and interrelated. Said more formally, what I called previously “categorical thinking” can lead to “categorical mistakes.”

The power of words

According to more than just a few of us, life’s big question is Why am I here? Others instead see How come I am here? as the mystery to be solved. Conventionally, people turn to theologians, philosophers, psychologists, and their best friends when they are seeking answers to the first question. The second one falls more in the thoughtful arena of pediatricians, scientists, cosmologists, mystics, and priests.

This division of labor, however, is not absolute, and is certainly not as categorical as such a divide implies.  One common thread crossing between these two realms of expertise is the belief or assumption—sometimes up front, sometimes only lurking in the background—that words are both powerful and are usually grounded in reality except, of course, when someone is “making things up” that they know are untrue.

The belief that words can be both truthful and powerful—that by naming things we are not just “putting into words” something already “out there” in the world, but can create something new as if “out of nothing”—is deeply rooted in the antiquity of our species. A classic example would be invoking the word abracadabra during a magic show to lend apparent substance to some clever illusion. But the roots of seeing words as powerfully creative run deeper than this trivial example.

The Almighty. Genesis cap 1 v 16. De Vos [By Phillip Medhurst [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from Wikimedia Commons]
For instance, consider the opening words of the Book of Genesis in the Hebrew Bible and Old Testament:

IN THE BEGINNING God created the heaven and the earth.
2  And the earth was without form, and void; and darkness was upon the face of the deep. And the Spirit of God moved upon the face of the waters.
3  And God said, Let there be light: and there was light.
4  And God saw the light, that it was good: and God divided the light from the darkness.
5  And God called the light Day, and the darkness he called Night. And the evening and the morning were the first day.
Relational thinking

In my first post I said that I am writing this series about dynamic network analysis because I want to explore with you how a different way of thinking about the world and our place in it can make it easier for us to see and make something out of how widely and how often critically things, people, and events are not separate and distinct in neat categorical ways, but instead are interwoven into relationships that make the whole totality of them, as the saying goes, bigger than the sum of the parts. Since what I want to write about, however, is complicated, I need to proceed step by step.

The next step in this second post is a brief quiz I’d like you to take before we move on to take a closer look in Post #3 at what is called network analysis.

Quiz: How good are you at thinking outside the category?

Please take a piece of printer paper and draw a line down the middle from top to bottom. Near the top of the left-hand column, write the word categorical. Do the same for the right column, except make the word relational. Then write in items under these two headings matching those shown here. Note that the last two rows are blank. In a moment I will be asking what you would add in these two bottom rows resonating with the rows above them.

Here’s the question I want to ask: What makes the items in the right-hand column different from those in the left-hand column? Yes, it is OK to use Google if some of the items seem obscure. And yes, this is a categorical question for sure.

The answers I am looking for

There are many ways to talk about the items in the left-hand column.  #1-2 are often viewed nowadays as wasteful single-use items that pollute the environment; #3 is a famous writer who rejected the virtues of altruism, praised individual rights, and is seen by many as a prophet of selfishness; #4 is an organization dedicated to protecting the rights of individual gun owners; #5 is the day each year when a given individual was born; #6 refers to the belief that all things can be boiled down to singular, individual particles called atoms.

In contrast, paper bags and paper straws are being promoted today as more environmentally friendly than their counterparts in the left column. #3 could be described as the high priest of the relativity rather than the individuality of things in the universe. Without trying to pin them down, the remaining three items are similarly all about things, events, and species that are enmeshed with one another.

Now here’s your job. What would you write in the blank rows at the end of this table? For instance, I myself would be tempted to write in one of these rows the card game solitaire vs. the team sport of boat racing.

By National Library of Ireland on The Commons (Waterford Boat Club) [No restrictions], via Wikimedia Commons [https://commons.wikimedia.org/wiki/File:Waterford_Boat_Club_(8401799848).jpg]
What’s the point I am trying to make?

In the first post in this series, I observed that for entirely understandable reasons each of us is by nature self-centered. Saying this, however, does not have to mean we are also inherently selfish despite the fact that jumping to such a conclusion is unfortunately fairly commonplace even in scholarly circles.  

As we will be exploring in this series, Ayn Rand and others both before and since have been misguided to believe otherwise. The continuing popularity of Rand’s ideas only shows that words can be powerful at least in the limited yet dangerous sense that they can be used to persuade us about what’s real and what’s unreal in the world of yesterday, today, and tomorrow without actual proof.

This is precisely why we need ways of getting outside our heads and dealing directly with the world that force us to “think outside the category.” Why? Because we need ways to confront our hasty impressions, deep-seated desires, wishes, and wants so that we can avoid errors in judgment, however innocent, that tragically can result in the desecration of the world we live in—and if we are not careful, our own extinction as a species.   

[sea-fog-plastic-sad-geology-waste-1115089-pxhere.com_-1.jpg]
This is Part 2 of a continuing series of posts on dynamic network analysis. Next up: 3. Connecting the dots.

 

© 2018 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Elements of Dynamic Network Analysis: 1. human nature


JOhn Terrell

Human beings are by nature highly social animals. Despite claims both popular and scientific, we also are not inherently selfish creatures. Yet we often seem self-centered. Why? Short answer: because we are looking out at the world from inside our skulls.

As my mother used to say, this is both good and bad. Let me explain briefly by offering you a few elementary observations about being human.

Your pragmatic brain

A fully functioning human brain is a remarkable compromise. Your senses are constantly feeding you input—lots of it—about what’s happening in the world around you, and also about what’s going on inside your body. If your brain were to pay close attention to all the details it is receiving about the state of things within and beyond you, it would rapidly become overloaded. That, of course, would make it useless to you as an organ dedicated to helping you in an admittedly self-serving fashion navigate your way more or less successfully from the cradle to the grave.

It is perfectly understandable, therefore, why your brain perpetually walks a fine line between paying too much attention to what it is being told by its senses, and too little.

Figure 1. “I swear they came out the box this way | by frankieleon” [https://www.flickr.com/photos/armydre2008/3576170595]
One way the brain accomplishes this delicate balancing act is to put things, people, or events striking it as more or less like one another into the same mind box—that is, into the same mental category. By this I mean what a dictionary says this word means:  “a class or division of people or things regarded as having particular shared characteristics.”

well-known rule of thumb illustrates the point I am trying to make: if it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck. A more colorful example is shown in Fig. 1.

But here’s the rub. What if your brain draws the line between too much and too little in the wrong place? What if it doesn’t pay enough attention to what it is being told by your senses about the animal your brain has concluded must be a duck? More to the point, what if making such a categorical mistake leads to serious consequences? Say, mistaking a friend coming into a darkened room for an intruder. And impulsively you shoot your friend dead?

Clearly having a pragmatic brain lodged inside that bony vault up there on your shoulders can be both good and bad, just as my mother would observe.

A world of our own making

Here’s another observation about how humans deal with the world. If novelty is the spice of life, then from your brain’s pragmatic point of view, predictability is life’s bread & butter.

Put simply, the more predictable a situation or event is, the easier it is for your brain to categorize it. And then, if need be, respond appropriately (or not).

Figure 2. By Crusier [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from Wikimedia Commons
It is again understandable, therefore, why as a species we humans invest so much of our time and effort (and money) into dumbing down the world around us to make the challenges we face as humdrum, predictable, and therefore categorical as possible.

By “dumbing down” I mean our species is remarkably skilled at remaking the world we live in to be less risky and uncertain than it otherwise would be for us. Said another way, we love to make what’s out there in the world fit into simple, convenient, widely applicable mind boxes, i.e., categories.

Humans are not the only creatures on earth who are predisposed to make the things and events they have to deal with as humdrum as they can make them. Many of the earth’s countless species are similarly committed in their own more limited ways—biochemical, physical, or behavioral—to enhancing their surroundings and creating favorable opportunities for themselves (we are not the only self-centered creatures on earth) by making things more suitable, more accommodating, more predictable. And for them, as well, more categorical.

This last remark is important, as I will be explaining in a later posting in this series. The brain's mind boxes called "categories" may or may not have actual words associated with them that we can use to talk about them. This is often why we may find it hard to put our ideas into words. But with this remark I am getting ahead of what I want to say in this first post. 

Figure 3. Termite mound, Litchfield National Park, Northern Territory, Australia [By brewbooks from near Seattle, USA (Cathedral Termite Mound) [CC BY-SA 2.0 (https://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons]
Classic examples of what other species do to dumb down the world for themselves would be beavers constructing dams to create ponds that help protect them against predators; termites building earthen mounds in Africa, South America, and Australia to live in; birds building nests; and earthworms improving the quality of the soil they move through by eating it and passing it through their bodies, over and over again, generation after generation, thereby making life easier and more fulfilling for the earthworms that take their place in the great circle of life.

Clearly, therefore, we are not alone as a species in being both able and crafty enough to improve our lives and living circumstances by making the world a safer and more predictable place to live in.

Even so, we humans are certifiably the Earth’s champions at the fine and skillful art of redoing the world to suit our needs as well as our fancies, however odd the latter may be (let’s all admit, shall we, that the artificial islands of the exotic tourist resort shown in Fig. 4 are an extreme example of our willingness to redesign the world to suit our fancies and our credit cards).

Figure 4. Palm Island Resort, Dubai, United Arab Emirates [https://commons.wikimedia.org/wiki/File:Dubai_-_The_Palm_Jumeirah_-_panoramio.jpg]
Confronting our pragmatic and often self-centered ways

We have reason, therefore, to be proud of the fact that our species excels all others at creatively dumbing down the world we live in to make the challenges we face humdrum and predictable. But there are genuine risks involved. Why so? Because we are not truly god-like in our powers. We are not all-seeing and wise. We are not always as good as we may think we are at drawing the line between knowing too much about the world and knowing too little.

And furthermore let’s be honest. Despite rhetoric to the contrary, truth (spelled with or without a capital “T”) may not actually be as appealing and important—that is, as useful—to us during our journey from the nursery to the grave as the pragmatic benefits and virtues of things and events (and people, too) that are easy, convenient, and predictable.

Here then is what this series of posts at SCIENCE DIALOGUES will be about:

  • Millions of years of evolution have done a skillful job of making us clever, inventive, and remarkably successful beings.
  • As history shows us again and again, however, our reliance as a species on the pragmatic (and generally self-serving) strategy of mentally putting things, people, and experiences into separate and seemingly distinct mind boxes—into different categories—often makes it hard for us to notice and pay sufficient attention instead to how things, people, and experiences are almost always linked and interrelated rather than separate and distinct. 
  • In this series, I will be calling the first brain strategy categorical thinking, and the second one relational thinking.
  • My goal in writing these posts will be to survey for you how the second way of thinking about the world and our place in it makes it easier for us to see and understand how widely and often critically things, people, and events impact one another—sometimes in unexpected and even disastrous ways (for example, see: Fig. 5).

Moral of the story so far: while understandable from an evolutionary and psychological point of view, being self-centered creatures is a handicap we humans need ways to confront and overcome.

Dynamic network analysis is one such way. I hope to convince you it is a good one, too.

Figure 5. The beach at Kanapou Bay collects debris from throughout the Pacific Ocean. [https://www.flickr.com/photos/noaaphotolib/19778606375]
This is Part 1 of a continuing series of posts on dynamic network analysis. Next up: 2. Relativity.
© 2018 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Neuroscience, psychology, and the noble art of blog boxing

John Edward Terrell


Please note: this commentary, recovered on 3-Febr-2017, was originally published in Science Dialogues on 16-June-2014.


Abstract: According to some, the current debate in psychology about “direct replication” as a way of being vigilant against scientific fraud and sloppiness is devolving into a boxing match fostering snottiness, snark, and downright bullying. However, focusing on the downside of this call to arms may be sidetracking us from attending to a more fundamental question—when is research replication the right thing to do?

ONE OF THE THINGS I LEARNED while struggling to write a book  about friendship, human nature, and evolution is that neuroscience  and neurotic are not all that far apart. Before saying why I got this impression, however, I need to say something first about psychology today.

Late 19th century phrenological chart (source: http://thegraphicsfairy.com/vintage-clip-art-antique-phrenology-head/)

While reading journal articles garnered using Google Scholar I got the impression that different researchers working in different laboratories aided perhaps by different sorts of machinery are not only coming up with seemingly incompatible conclusions about how the human mind works (e.g., is there or isn’t there a lateral bias to creativity up there in the cranium?), but also that the left hand isn’t always aware of what the right hand is doing. Different research fiefdoms seem to be chugging along more or less unawares of how others are tackling the same issues. And I had the suspicion few are trying to replace the out-dated unity of wisdom of Sigmund Freud with anything approaching a holistic model of the mind. Why so, if this is true?

I am willing to admit my ignorance, but am I wrong to think experts in neuroscience nowadays are a lot like the famous blind men and the elephant? Each research team may have a firm grip on a piece of the puzzle, but does anyone really know how that beast called the brain actually works?

But wait a minute. What’s neurotic about the picture I am painting? A recent blog exchange between my friend Jim Coan at the University of Virginia and the anonymous science blogger Neuroskeptic has brought me some enlightenment on what sure seems like neuroticism to me.

According to Coan, there is currently a strong push within the field of neuroscience and psychology in general for something called “direct replication” (Klein et al. 2014)—a push that he finds both charming and naive. His real beef, however, is that some are taking this push to mean what might be called “replication failure” (my phrase, not Jim’s) is not just a worry confined (to succumb to a bit of word play) to the boudoir. Failure to replicate, real or perceived, evidently is giving rise to a rash of social nastiness he labels Negative Psychology that strikes me as being akin (or so it would seem) to the worst excesses of the post-modernist critique. “When we criticize each other using the tropes of Negative Psychology—that is, with moral outrage, hostile humor, and public shaming—we train the public to either disregard science altogether, or . . . to confuse outrage with rigor.”

While Coan points his finger as one case in point at Neuroskeptic anon., the latter in response has pleaded not guilty. In fact, Neuroskeptic anon. says he (or she) and Coan are on pretty much the same page and wavelength, and darnitall Jim would know this if he had bothered to read everything Neuroskeptic anon. has written in her (or his) blog over the years since ca. 2008.

I am not sure I should confess this, but I am not a great fan of blog sites. Until Jim’s entry into the fray (his first, by the way) I had paid scant attention to Neuorskeptic anon.’s corpus of writings on the web. Nor do I want to weigh in now as a qualified referee for minding the rules of the noble art of blog boxing. But I do agree with Coan on one thing.

He begins his own blog piece with this statement: “People on all sides of the recent push for direct replication—a push I find both charming and naive—are angry.” I think I know charm when I see it, and I don’t find much that is charming about what’s happening in the sciences of the psyche. But I do think the word naive is worth taking to heart.

According to some, skepticism is fashionable these days, and not just in psychology. One could argue, for example, that this is also a core tenet of climate-change deniers and the Tea Party in the U.S.A. Furthermore, who anywhere on earth could possibly deny that the replication of research results is the gold standard of scientific excellence?

Well maybe here and now and maybe me.

Perhaps more so than Jim Coan may be prepared to argue judging by his blog on Negative Psychology, I would at least like to cast a stone or two in that general direction. By focusing as he and Neuroskeptic anon. do on snark and snottiness at the core of modern skepticism in its many stripes, I think they may both be getting sidetracked from attending to a more central issue—namely why does anyone think research replication is such a good thing to do?

No doubt about it, failure to replicate research results may certainly be a flag on the field, but as Coan has said, anyone with a respectably nuanced view of why replications may fail knows they may do so for all kinds of reasons. What would be naive is to accept that not failing to replicate is proof of the pudding.

Why is this naive? Because doing the same thing over and over again in precisely the same way may amount to little more than making the same damn mistake over and over again–and thereby arriving at the same (erroneous) resolve over and over again. Said differently, direct replications that are just repetitions of the same-old same-old ought to be taken with a grain of salt and viewed with suspicion.

Now am I suggesting that like the United States in 1933 scientists should go off this gold standard? Maybe.

In 1966 the biologist Richard Levins published a paper on model building in population biology that has become a classic in the practice and philosophy of science (Levins 1966, 1993). I have long felt that Levins was leaning a lot on what Henri Poincaré (1905) and Alfred North Whitehead (1938) had written about such matters, and should have said so. Nonetheless, I am not alone in thinking what Levins wrote was inspirational and wise. And one of his main conclusions has become famous: “truth is the intersection of independent lies’’ (1966:423).

What he meant by this provocative statement has been richly discussed and debated (e.g., Levins 2006; Odenbaugh 2006; Orzack 2005;  Orzack and Sober 1993; Weisberg 2006a, 2006b). One of the pragmatic lessons, however, taken home after reading his paper (as indeed after reading Poincaré and Whitehead) is that for all sorts of reasons there is no such thing as the definitive single approach, experiment, or scientific model capable of capturing reality in all its chameleon-like complexity.

Therefore, as Levins wrote retrospectively in 2006, we need different ways of converging on the truths we are looking for. Consider this:

In the dispute about climate change, a rising temperature in several cities is suggestive. Adding more cities to the list gives a diminishing return. But independent lines of evidence—ocean temperatures, cores from glaciers, decline of coral reefs, spread of species into places that had been too cold for them, accumulation of greenhouse gasses—each may have some separate idiosyncratic explanation or source of error but jointly converge on an unavoidable conclusion. We have to seek lines of evidence as independent as we can in order to support a large scale conclusion. (Levins 2006:753)

Where am I going with this? The strategy Levins is talking about (as did Poincaré and Whitehead before him) is not the one at the heart of the current drive in psychology and other sciences to replicate evidently successful experiments others have done. No, instead the take-home directive is this one: Can we do a different experiment to see if we get the same resolve? And if not, why?

If this strategy were routine, then there would be no doubt about it. To repeat earlier experiments that led to different results if nothing else is a way to become more confident before making headlines with what we have just done that we have given others due and proper benefit of the doubt. But this wouldn’t be something that might be called “knee-jerk direct replication.” This instead would doing something called “just good science.”

References

Bohannon, J. 2014. Replication effort provokes praise—and “bullying” charges. Science 344:788–789.

Klein, R. A. Klein, K. A. Ratliff, M. Vianello, R. B. Adams Jr., Š. Bahník, et al. 2014.  Investigating variation in replicability: a ‘‘many labs’’ replication project. Social Psychology 45:142–152.

Levins, R. 1966. The strategy of model building in population biology. American Scientist 54:421–431.

Levins, R. 1993. A response to Orzack and Sober: formal analysis and the fluidity of science. Quarterly Review of Biology 68:547–555.

Orzack, S. H. and E. Sober. 1993. A critical assessment of Levins’s The strategy of model building in population biology (1966). 1993. Quarterly Review of Biology 68:533–546.

Odenbaugh, J. 2006. The strategy of ‘‘the strategy of model building
in population biology.’’  Biology and Philosophy 21:607–621.

Orzack, S. H. 2006. Discussion: what, if anything, Is “the strategy of model building in population biology?” A comment on Levins (1966) and Odenbaugh (2005). Philosophy of Science 72: 479–485.

Poincaré, H. 1905[1952]. Science and hypothesis, reprint ed. New York: Dover.

Weisberg, M. 2006a. Forty years of “the strategy”:  Levins on model building and idealization. Biology and Philosophy 21:623–645.

Weisberg, M. 2006b. Richard Levins’ philosophy of science. Biology and Philosophy 21:603–605.

Whitehead, A. N. 1938[1968]. Modes of thought, reprinted ed. New York: Free Press.

© 2014 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Thinking about thinking 4. Our social baseline

John Edward Terrell and Gabriel Stowe Terrell


Please note: this commentary, recovered on 9-Jan-2017, was originally published in Science Dialogues on 16-April-2015.


http://www.alice-in-wonderland.net/pictures/tweedledee-tweedledum-pictures.html

“The first thing in a visit is to say ‘How d’ye do?’ and shake hands!” And here the two brothers gave each other a hug, and then they held out the two hands that were free, to shake hands with her.

Alice did not like shaking hands with either of them first, for fear of hurting the other one’s feelings; so, as the best way out of the difficulty, she took hold of both hands at once . . .

Through the Looking-Glass by Lewis Carroll, 1871

AT THE HANDS OF SOMEONE like William Shakespeare or Virginia Woolf, humans may come off sounding complex, cantankerous, and downright mean at times, but often and also kind, noble, loving, and at least momentarily wise and intelligent. On the other hand, portrayals of our species in the reckonings of science are often far more one-sided and two-dimensional. Thus according to the zoologist Edward O. Wilson (2012) we are a tribal eusocial  species committed to killing outsiders for the good of our home group. The evolutionary psychologist Steven Pinker (2011a) maintains that we all have in effect if not in fact violent demons lurking within us that must be tamed by reason, compassion, and good governance. The social scientists Samuel Bowles and Herbert Gintis (2011) have expressed a more favorable view of human nature, but again like Wilson and Pinker, they have described our willingness to cooperate with one another as an evolutionary mystery in need of resolution given that humans are selfish at heart and can be self-serving in their motivations.

The most parsimonious proximal explanation of cooperation, one that is supported by extensive experimental and other evidence, is that people gain pleasure from or feel morally obligated to cooperate with like-minded people. People also enjoy punishing those who exploit the cooperation of others, or feel morally obligated to do so. (Bowles and Gintis 2011: 3)
Dubious assumptions

There are two major assumptions at the ground level of most current scientific analyses of human nature. The first is that selfishness is one of the prime movers of biological evolution. The second is the claim that human cooperation is based on reason, shame, and good gamesmanship. “The most important psychological contributor to the decline of violence over the long term may instead be reason: the cognitive faculties, honed by the exchange of ideas through language, that allow us to understand the world and negotiate social arrangements” (Pinker 2011b: 310). Both of these assumptions are questionable.

Neo-Darwinian determination

The fundamentals of evolutionary thinking as a way of explaining what we are seeing in the world of today and in the past have changed over time since Darwin’s day (Amundson 2014). Tom Clark has shown in his series of commentaries at SCIENCE DIALOGUES on Darwin’s use of “use and disuse” that during the latter half of the 20th century, the neo-Darwinian assumption that genes and environments were sufficient causes of observed behavior “turned natural selection from an animate doing into a physical happening. Attributing behavior to stable causes both inside (molecules) and outside (environment) turned animals into spectators, along for the ride.”

Clark underscores that how we tell our story of what it means to be human and how we have evolved to be the sort of animal we are directly leverages or constrains how well we handle our individual and collective impacts on the earth and our fellow human beings.

As Michael Ruse (2014) has observed, today natural selection is the mechanism seen by most experts on evolution as the chief reason  for organic change. It is perplexing, however, that when it comes to our species, attempts to explain our general willingness to cooperate with one another often take it as self-evident that selfishness, infra-specific competition, and gamesmanship (Potter 1947; Rand et al. 2013) rule the day even when we seem to be acting in kind, considerate, and evidently caring ways towards others (Terrell 2015: 111–117).

Such scientific cynicism may make perfect sense given the ruling assumptions of neo-Darwinian theory today, but the picture looks quite different if it isn’t accepted from the get-go that selfishness has to be a part of every permissible Darwinian explanation for life’s diversity and history on earth.

Social baseline theory

The psychologists Lane Beckes and his colleague James Coan are studying empathy and cooperation based on a radically different view of what it means to be human, a research tactic they call social baseline theory (Beckes and Coan 2011). Their working assumption is one that many would accept with little disagreement: being a social animal gives any species a genuine and practical advantage in the Darwinian struggle for survival and reproduction. And for humans at least, having the capacity to live and work closely with others also gives us a social baseline of emotional support and security. So much so, they say, that our social ties with other people are in effect an extension of the way the human brain interacts with the world. As a consequence, when we are around others we know and trust, we can let down our guard and relax.

From this perspective, the experienced payoffs are more than emotional. When we thus feel safe and secure, we are literally able to devote less energy—and we would add, less time—to staying alert for possible threats and uncertainties. Indeed, they have argued that the human brain has evolved to assume the presence of other people. In their words: “In our view, the human brain is designed to assume that it is embedded within a relatively predictable social network characterized by familiarity, joint attention, shared goals, and interdependence.”

On the other side of the mirror

Beckes and Coan have said a major saving grace of human sociality is the energetic cost benefit of not having to be the only one looking out for number one (Beckes and Coan 2011; Coan and  Maresh 2014; Coan and Sbarra 2015). While we would grant that there may be be such a cost benefit, we are uncertain how decisive this savings has been in shaping human evolution. After all, the probability of survival is determined not only by how much effort you have to put into the struggle. It can be argued that we are such strongly social animals for other reasons, too. First, we critically depend on social learning to know how to survive in the first place. Second, many of us—but admittedly not all—are predisposed socially and emotionally to be caregivers because our offspring wouldn’t survive the first years of their lives if we weren’t (Terrell 2015: 190–191).

To survive and reproduce, organisms must take in more energy than they expend, a principle of behavioral ecology called economy of action. Social baseline theory (SBT), a framework based on this principle, organizes decades of observed links between social relationships, health, and well-being, in order to understand how humans utilize each other as resources to optimize individual energy expenditures. (Coan and Maresh 2014: 221).

Furthermore, there is the matter of time. It may be true that time is money, but we humans are pretty good at wasting time for apparently no good reason, energetic or otherwise. And certainly there is no denying that when we feel safe and secure, many of us are willing to invest both time and energy in seemingly unproductive ways.

Consider, for example, the metabolic cost of the continuing mental activity in what has been dubbed the brain’s default mode network (DMN) when we are not task-engaged. The reward of not having to attend closely to the practicalities of the world around us when we feel safely embedded in nurturing social networks may be the excitement Alice must have felt in Lewis Carroll’s story after she had slipped through the looking-glass to explore the hidden wonders to be found therein (although judging by his singular account, Alice evidently did not find doing so as addictive as some today find the similar cognitive experience of playing online computer games). Just as those incarcerated in our penal system may be given time off for good behavior, so too, sharing the demands and burdens of life with others gives us time off to play with whatever takes our fancy on that landscape between our ears.

Previously in this series:
"Thinking about thinking 1. Cognitive niche construction"
"Thinking about thinking 2. Through the looking-glass"
"Thinking about thinking 3. Free will"
References

Amundson,  Ron (2014). Charles Darwin’s reputation: How it changed during the twentieth-century and how it may change again. Endeavour 38: 257–267.

Beckes, Lane and James A. Coan (2011).  Social baseline theory: The role of social proximity in emotion and economy of action.  Social and Personality Psychology Compass 5: 976–988.

Bowles, Samuel and Herbert Gintis (2011). A Cooperative Species: Human Reciprocity and Its Evolution. Princeton: Princeton University Press.

Coan, James A. and Erin L. Maresh (2014). Social baseline theory and the social regulation of emotion, pages 221–236. In J. Gross, ed., The Handbook of Emotion Regulation, 2nd. ed., pp. 221–236. New York: Guilford Press.

Coan, James A. and David A. Sbarra (2015). Social baseline theory: The social regulation of risk and effort. Current Opinion in Psychology   1: 87–91.

Pinker, Steven (2011a). The Better Angels of Our Nature: The Decline of Violence in History and its Causes. New York: Viking.

Pinker, Steven (2011b). Taming the devil within us. Nature  478: 309–311,

Potter, Stephen (1947). Theory and Practice of Gamesmanship. New York: Henry Holt & Company.

Rand, David G., Corina E. Tarnita, Hisashi Ohtsuki, and Martin A. Nowak (2013). Evolution of fairness in the one-shot anonymous Ultimatum Game.  Proceedings of the National Academy of Sciences U.S.A. 110:  2581–2586.

Ruse, Michael (2014). Was there a Darwinian revolution? Yes, no, and maybe! Endeavour 38: 159–168.

Terrell, John Edward (2015). A Talent for Friendship: Rediscovery of a Remarkable Trait. Oxford and New York: Oxford University Press.

Wilson, Edward O. (2012). The Social Conquest of the Earth. New York: Liveright (a division of W. W. Norton).


John Edward Terrell is Regenstein Curator of Pacific Anthropology at The Field Museum, Chicago, IL 60605. His latest book A Talent for Friendship: Rediscovery of a Remarkable Trait was published on December 1, 2014 by Oxford University Press. Email address: terrell[at]fieldmuseum.org

Gabriel Stowe Terrell is a freelance writer living in Madison, Wisconsin.

 

 

 

© 2015 John Edward Terrell and Gabriel Stowe Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Thinking about thinking 3. Free will

John Edward Terrell and Gabriel Stowe Terrell


Please note: this commentary, recovered on 9-Jan-2017, was originally published in Science Dialogues on 24-March-2015.


http://commons.wikimedia.org/wiki/File:Alice_par_John_Tenniel_16.png

THE BEHAVIORIST B. F. SKINNER was famously opposed to “mentalistic explanations” for human behavior. By this he meant attributing to the world of the mind an active “top-down” role (Baumeister and Miller 2014) in determining what we think, say, and do. In his eyes, trying to explain our overt behavior by appealing to inner states of mind, feelings, and other elements of an “autonomous man” inside our skulls was utterly foolish, unscientific, and a waste of time. “The ease with which mentalistic explanations can be invented on the spot is perhaps the best gauge of how little attention we should pay to them” (Skinner 1971: 160).

Instead, according to Skinner, the “task of a scientific analysis is to explain how the behavior of a person as a physical system is related to the conditions under which the human species evolved and the conditions under which the individual lives” (1971: 14). As distasteful as some might find such a realization, “the fact remains that it is the environment which acts upon the perceiving person, not the perceiving person who acts upon the environment” (1971: 188).

Even Skinner was willing to concede the “indisputable fact of privacy.” Nonetheless he stuck to his staunch environmentalism. “It is always the environment which builds the behavior with which problems are solved, even when the problems are to be found in the private world inside the skin” (1971: 194).

In a scathing review of Skinner’s 1971 book Beyond Freedom and Dignity, the linguist Noam Chomsky thoroughly rejected Skinner’s scientific claims. “His speculations are devoid of scientific content and do not even hint at general outlines of a possible science of human behavior. Furthermore, Skinner imposes certain arbitrary limitations on scientific research which virtually guarantee continued failure” (Chomsky 1971).

Unfortunately Chomsky’s spirited defense of human freedom and dignity against Skinner’s denial of both offered few concrete hints on why we are not the automatons Skinner said we are. But how are we not controlled by the world around us and by all that life deals us, both painful and pleasurable? How and how much does Skinner’s nemesis “autonomous man” have any real say in what we think, feel, and do? Chomsky left these critical issues unexplored and undocumented.

The mind-body problem

The philosopher Jerry Fodor noted in 1980 that traditional philosophies of mind can be divided into two sorts: dualist theories and materialist theories. “In the dualist approach the mind is a nonphysical substance. In materialist theories the mental is not distinct from the physical; indeed, all mental states, properties, processes and operations are in principle identical with physical states, properties, processes and operations” (Fodor 1980: 114). Since then cognitive psychologists and experts in neuroscience imaging have come down more or less firmly on the side of materialist theories, although exactly how the neurological hardware and software called the brain processes information and arrives at conclusions remains more an educated guess than a demonstrated reality.

Awkwardly what has traditionally been called the “mind-body problem” has often been seen in both science and philosophy as a conundrum about the consciousness of our thoughts and decisions. Yet as Max Velmans (2008) has observed, “it is now clear that ‘mind’ is not quite the same thing as ‘consciousness,’ and that the aspect of body most closely involved with consciousness is the brain. It is also clear that there is not one consciousness–brain problem, but many.” In other words, reading “mind and body” to mean “consciousness and brain tissue” is far too restrictive, too limiting.

Recently Ralph Adolphs (2015) at the California Institute of Technology surveyed what we do and don’t know about consciousness as a mental phenomenon and finds that there is little agreement about what it is and how it works. He helpfully divides the unsolved problems in neuroscience into four basic categories ranging from those that are now solved or will soon be to those that may never be decided. Discouragingly, he puts three key issues in the latter category. (1) How does the human brain compute? (2) How can cognition be so flexible and generative? (3) How and why does conscious experience arise?

His final conclusion is equally sobering. “In a nutshell, then, the biggest unsolved problem is how the brain generates the mind, conceived of in a way that does not simultaneously require answering the problem of consciousness.” However, on a more promising note, he adopts the framework proposed by David Marr (1982) to suggest that memory at least can be understood as the “ability to predict the future by learning.”

This comment is worth emphasizing. Unlike old Father William in Lewis Carroll’s famous poem who elected to stand on his head again and again after learning he had no brain, we see the design and decision-making that are both so fundamental to human niche construction as tangible proof that the human brain is capable of stimulus-independent, self-directed thought (Bonn 2013)—a roundabout way of saying that like Father William, the cognitive manipulations and innovations happening in our minds can lead to top-down, not just bottom-up causation (Foulkes and Domhoff 2014).

Evidence favoring this admittedly far from surprising conclusion can be seen readily enough in what happens on the landscape between our ears during that mysterious cognitive activity called dreaming.

Dreams and dreaming
Sir John Tenniel’s hand-colored proof of Cheshire Cat in the Tree Above Alice for The Nursery “Alice”, ca. 1889. http://commons.wikimedia.org/wiki/File:Tennel_Cheshire_proof.png

It is an enduring folk belief that we live our lives on-again off-again in dichotomous ways. We are either happy or sad, awake or asleep, conscious or unconscious, rational or emotional, and so on.

Cognitive psychology today, however, is discovering that a great deal that is happening in the brain instrumental to our survival, success, and emotional well-being is (1) largely disengaged from our conscious awareness of what’s going on both inside and outside us (e.g., Mudrik et al. 2014; Soto and Silvanto 2014), and is (2) more dependent on our feelings and emotions than conventionally seen (e.g., Inzlicht et al. 2015).

Dreaming, like consciousness, is one of those arenas of mental life about which much has been written and yet much remains to be understood (Domhoff and Fox 2015). Here we offer two observations. First, dreaming is more a top-down brain activity than generally envisioned (Foulkes and Domhoff 2014). Second, nobody who has ever recalled a dream needs to be told by anyone else that our brains are capable of creating often credible but truly off-the-wall situations, scenarios, and storied experiences that may not only have lingering emotional impact long after awakening, but can also be a source of great inspiration and creative insight. In short, cognitive niche construction does not need to be either conscious or wakeful.

Free will

Saying you know for sure what free will is or isn’t has long been a reliable way of provoking debate (Monroe et al. 2014). Nonetheless, here are three claims based on what we have been discussing thus far in this SCIENCE DIALOGUES series. First, human beings can think about things and actions—past, present, or future—without being aware that they are doing so (Bonn 2013). Second, human beings can act in accord with the worlds they construct for themselves in their Leslie minds. Third, free will does not have to be rational if by rational we mean “makes sense” in terms of the external world and the laws of physics, etc. Cognitive niche construction may begin with our own experiences of the world, but it does not have to end there. And as we shall discuss in later commentaries in this series, therein lies a problem.

Forthcoming in this series: "Thinking about thinking 4. Our social baseline."
Previously in this series: 
"Thinking about thinking 1. Cognitive niche construction"
"Thinking about thinking 2. Through the looking-glass"
References

Adolphs, Ralph (2015). The unsolved problems of neuroscience. Trends in Cognitive Science, in press.

Buschman, Timothy J. and Earl K. Miller (2014). Goal-direction and top-down control. Philosophical Transactions of the Royal Society B: Biological Sciences 369: 20130471 http://dx.doi.org/10.1098/rstb.2013.0471.

Bonn, Gregory B. (2013). Re-conceptualizing free will for the 21st century: Acting independently with a limited role for consciousness. Frontiers in Psychology 4: 920. doi: 10.3389/fpsyg.2013.00920

Chomsky, N. (1971). The case against B. F. Skinner. The New York Review of Books 17: 18-24.

Domhoff, G. William and Kieran C. R. Fox (2015). Dreaming and the default network: A review, synthesis, and counterintuitive research proposal. Consciousness and Cognition 33: 342–353.

Fodor, Jerry (1880). The mind-body problem. Scientific American244/1: 114–123.

Foulkes, David and G. William Domhoff (2014). Bottom-up or top-down in dream neuroscience? A top-down critique of two bottom-up studies. Consciousness and Cognition 27: 168–171.

Inzlicht, Michael, Bruce D. Bartholow, and Jacob B. Hirsh (2015). Emotional foundations of cognitive control. Trends in CognitiveScience 19: 126–132.

Marr, David (1982). 9 Marr, D. (1982) Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco: W. H. Freeman.

Monroe, A. E., Dillon, K. D., and Malle, B. F. (2104). Bringing free will down to earth: People’s psychological concept of free will and its role in moral judgment. Consciousness and Cognition 27: 100–108.

Mudrik, Liad, Nathan Faivre, and Christof Koch (2014). Information integration without awareness. Trends in Cognitive Sciences 18: 488–496.

Skinner, B. F. (1971). Beyond Freedom and Dignity. New York: Alfred A. Knopf, 1972.

Soto, David and Juha Silvanto (2014). Reappraising the relationship between working memory and conscious awareness. Trends in Cognitive Sciences 18: 520–525.

Velmans, Max (2008). How to separate conceptual issues from empirical ones in the study of consciousness. In R. Banerjee and B. K. Chakrabarti (eds.), Models of Brain and Mind: Physical, Computational and Psychological Approaches 168: 1–9.

Acknowledgements

We thank Tom Clark and Kevin Kelly for their comments and suggestions for improvement.

John Edward Terrell is Regenstein Curator of Pacific Anthropology at The Field Museum, Chicago, IL 60605. His latest book A Talent for Friendship: Rediscovery of a Remarkable Trait was published on December 1, 2014 by Oxford University Press. Email address: terrell[at]fieldmuseum.org

Gabriel Stowe Terrell is a free-lance writer living in Madison, Wisconsin.

 

 

 

© 2015 John Edward Terrell and Gabriel Stowe Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Thinking about thinking 2. Through the looking-glass

 John Edward Terrell and Gabriel Stowe Terrell

Please note: this commentary, recovered on 9-Jan-2017, was originally published in Science Dialogues on 5-March-2015.


Source: http://www.alice-in-wonderland.net/

“Oh, Kitty! how nice it would be if we could only get through into Looking-glass House! I’m sure it’s got, oh! such beautiful things in it! Let’s pretend there’s a way of getting through into it, somehow, Kitty. Let’s pretend the glass has got all soft like gauze, so that we can get through. Why, it’s turning into a sort of mist now, I declare! It’ll be easy enough to get through—” She was up on the chimney-piece while she said this, though she hardly knew how she had got there. And certainly the glass was beginning to melt away, just like a bright silvery mist.

Through the Looking-Glass by Lewis Carroll, 1871

 ALICE’S ADVENTURES IN WONDERLAND (first published in 1865) is Lewis Carroll’s most beloved book thanks in part to Walt Disney Studios and its 1951 cartoon version that  beautifully captured the logical nonsense of Carroll’s rich fantasy world of talking rabbits, smiling cats, and unlikely occurrences. The Disney cartoon, however, also incorporated a few of the characters and events from Carroll’s sequel Through the Looking-Glass and What Alice Found there (1871).

While both books exhibit his brilliance at cognitive niche construction, Carroll’s framing his second story around the otherworldly semblance of reality seen in a looking-glass may have been inspired by his own reflections on the elusiveness of human thought. He was a mathematician first and foremost. He knew well that however much our thoughts may mirror the world around us and what we experience from the cradle to the grave, each of us lives in a cognitive world populated by our own private thoughts on the “other side of the looking-glass”—a world that, unlike Alice, others cannot enter and explore.

The human conundrum

There is nothing surprising about saying we can draw a line between our public lives and our private thoughts. Look into the eyes of any dog. There is also nothing remarkable about saying  we are evidently not the only species capable of entertaining private thoughts and passions. As one of us has explored more fully elsewhere (Terrell 2015), our evolved human capacity to engage in cognitive niche construction—however remarkable or shared with at least some other species—brings with it costs as well as benefits. Socially we have evolved as a species to both want and need human contact and engagement. Yet during the evolution of our huge human brain we achieved a level of private cognition that enables us to disengage from the world around us. Hence as a species we are confronted with a conundrum.  We are social creatures with private thoughts “on the other side of the mirror” that can isolate us from others.

THE DYNAMIC INTERPLAY OF HUMAN EVOLUTION
Over the course of human evolution there has been a dynamic interplay between our mental & physical abilities, our brains, our social behavior, and our cleverness at niche construction that has also nurtured our skillfulness as a species at cognitive niche construction.
Lou, Laurence, and Leslie

Modeling how our minds work has taken many twists and turns over the course of human history. Some of the more extreme recent interpretations have insisted either that the brain is massively modular in its aptitudes (Steven Pinker and other evolutionary psychologists), or alternatively is passively shaped, or sculpted, by our interactions with the world around us (classical 20th century stimulus-response psychology).

At this stage in our investigations, we prefer to remain agnostic about how the brain’s circuitry gives us the capacity for thinking as seen in all its many dimensions, public and private (Adolphs 2015; Lamme 2006). In keeping with Daniel Kahneman’s (2011) wisdom to use such things as tools for thought rather than as literal descriptions of our cerebral hardware, we find it useful to characterize how we think about things and events in three different ways using the labels LouLaurence, and Leslie (for discussion, see: Terrell 2015: chapter 4):

  • Lou (also known as System 1 or Type 1)—thinking that is unconscious, automatic, quick, perhaps emotional, and easy to do; in short, information processing in the brain done mostly without conscious awareness; a type of thinking that may be evolutionarily old and is probably also within the mental capabilities of other animal species; the realm of our habitual selves.
  • Laurence (called System 2 or Type 2)—thinking that is conscious, slow, takes effort, and is purposeful; usually said to be involved in “higher-order” cognitive processes such as logical reasoning and decision-making; may or may not be unique to our species; the realm of intentional environmental niche construction.
  • Leslie—thinking that is contemplative, abstract, may be counterfactual, and is largely detached from an individual’s immediate realities; may or may not be unique to our species; the realm of cognitive niche construction
THE VISTA ON THE OTHER SIDE OF THE LOOKING-GLASS IN LEWIS CARROLL’S COGNITIVE WORLD WAS CURIOUSLY CARTESIAN! “For some minutes Alice stood without speaking, looking out in all directions over the country—and a most curious country it was. There were a number of tiny little brooks running straight across it from side to side, and the ground between was divided up into squares by a number of little green hedges, that reached from brook to brook.” http://upload.wikimedia.org/wikipedia/commons/a/a1/Curious_country.jpg
Self-generated thought

As Jessica Andrews-Hanna and her colleagues observed recently, understanding the mechanisms underlying self-generated thought and its adaptive and maladaptive functional outcomes has been a key aim of cognitive science in recent years (Andrews-Hanna et al. 2014: 29). In their estimation, far from being a passive brain phenomenon, for example, the default mode network (DMN) within our skulls contributes to several active forms of internally driven cognition. As she and her colleagues have written:

Tasks that activate the network often require participants to retrieve episodic, autobiographical, or semantic information, think about or plan aspects of their personal future, imagine  novel scenes, infer the mental states of other people, reason about moral dilemmas or other scenarios, comprehend narratives, self-reflect, reference information to one’s self, appraise or reappraise emotional information, and so on. (Andrews-Hanna et al. 2014: 32)

Although much remains to be learned about the costs and benefits of self-generated thought—which has also been dubbed stimulus-independent thought, spontaneous thought, internally-directed thought, and mind-wandering—it is becoming increasingly clear that the default and executive networks in the brain are not inherently working in opposition.

Kalina Christoff and her colleagues, as a case in point, have argued that both networks can work in parallel in ways that are reminiscent of the neural recruitment observed during creative thinking before solving problems with insight. Furthermore, “similar parallel recruitment of executive and default regions has also been observed during naturalistic film viewing, which is related to immersive simulative mental experience” (Christoff et al. 2009: 8723).

What we find both intriguing and frustrating  is that many researchers studying self-generated thought, with notable exceptions (Killingsworth and Gilbert 2010), seem committed to the view that internally-directed thought lies within the reach of human cognition because even when it appears to be getting us away from what we really ought to be doing to survive and make a living, mind-wandering may nonetheless “enable the parallel operation of diverse brain areas in the service of distal goals that extend beyond the current task” (Christoff et al. 2009: 8723).

Perhaps, but not necessarily so, as we shall discuss in the next commentary in this series.


Previously in this series: “Thinking about thinking 1: Cognitive niche construction”  Next in this series“Thinking about thinking 3. Free will”


References

Adolphs, Ralph (2015). The unsolved problems of neuroscience. Trends in Cognitive Sciences, in press.  http://dx.doi.org/10.1016/j.tics.2015.01.007

Andrews‐Hanna, Jessica R., Jonathan Smallwood, and R. Nathan Spreng (2014). The default network and self‐generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences 1316: 29–52.

Christoff, Kalina, Alan M. Gordon, Jonathan Smallwood, Rachelle Smith, and Jonathan W. Schooler (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc. Natl. Acad. Sci. U.S.A. 106: 8719–8724.

Kahneman, Daniel (2011). Thinking: Fast and Slow. New York: Farrar, Straus and Giroux.

Killingsworth, Matthew A., and Daniel T. Gilbert (2010). A wandering mind Is an unhappy mind. Science 330: 932.

Lamme, Victor A. F. (2006). Towards a true neural stance on
consciousness. Trends in Cognitive Sciences 10: 494–501.

Terrell, John Edward (2015). A Talent for Friendship: Rediscovery of a Remarkable Trait. Oxford and New York: Oxford University Press.


John Edward Terrell is Regenstein Curator of Pacific Anthropology at The Field Museum, Chicago, IL 60605. His latest book A Talent for Friendship: Rediscovery of a Remarkable Trait was published on December 1, 2014 by Oxford University Press. Email address: terrell[at]fieldmuseum.org

Gabriel Stowe Terrell is a freelance writer living in Madison, Wisconsin.

 

 

 

© 2015 John Edward Terrell and Gabriel Stowe Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Thinking about thinking 1. Cognitive niche construction

John Edward Terrell 

Please note: this commentary, recovered on 9-Jan-2017, was originally published in Science Dialogues on 22-Jan-2015.


“Can we state more distinctly still the manner in which the mental life seems to intervene between impressions made from without upon the body, and reactions of the body upon the outer world again?”

William James, The Principles of Psychology, 1890: 6

By Dmitry Rozhkov (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
THE NEUROLOGIST MARCUS RAICHLE HAS remarked that studies of brain function have traditionally focused on task-evoked responses (Raichle 2010, 2015). As Daniel Kahneman has explained, such research has contributed the useful convention that there are two modes of thinking—two systems in the mind, System 1 (or Type 1) and System 2 (or Type 2). In Kahneman’s words (2011: 20–21):

System 1 operates automatically and quickly, with little or no effort and no sense of voluntary control.

System 2 allocates attention in the effortful mental activities that demand it, including complex computations. The operations of System 2 are often associated with the subjective experience of agency, choice, and concentration.

Although such conventions are useful, Raichle argues that focusing on task-evoked responses “ignores the alternative possibility that brain functions are mainly intrinsic, involving information processing for interpreting, responding to and predicting environmental demands” (2010: 180).

As he says, it is not difficult to see why so much attention has been given to monitoring neural responses to carefully designed tasks that can be rigorously controlled: “evaluating the behavioral relevance of intrinsic activity (i.e. ongoing neural and metabolic activity which is not directly associated with subjects’ performance of a task) can be an elusive enterprise” (2010: 180).

While it could be argued that intrinsic brain tasks are part and parcel of System 2 thinking, I believe it may be more constructive to infer instead that there is a third mode of thinking—one that I have suggested may be called cognitive niche construction (Terrell 2015: 29–32, 168–172)—a way of thinking that may strongly engage the brain’s default-mode network.

Default-mode network

As Raichle (2015) and Robert Spunt and his colleagues (in press) have underscored, there is considerable metabolic cost to running the human brain when it is engaged in ongoing internal activity. As the latter researchers observe: “most of the brain’s energy budget is consumed not by activity evoked by specific cognitive tasks (e.g., mental arithmetic) but by spontaneous ongoing activity that is most notable when the brain is at rest.”

Given the metabolic cost of this ongoing internal activity in what has been dubbed the brain’s default mode network (DMN) when we are not task-engaged, an obvious question arises. How can we afford such stimulus-independent activity?

Raiche, Spunt et al., and others stress the likelihood that such inner-directed brain activity must be somehow adaptive in a realistic Darwinian sense, i.e., this inner activity must be “functionally consequential for the execution of stimulus-dependent mental state inferences” (Spunt et al. in press). This inference is plausible, but arguably not sufficient.

Niche construction

How we are able to remake the world around us when we put our minds and backs to the effort has been called niche construction (Odling-Smee et al. 2003). In the biological sciences, the word “niche” means “way of life,” and every species is said to have its particular place, or niche, in the economy of life. We are just one of a number of species that excel at making and remaking their way of life, their place in the grand scheme of things, their ecological niche. Similarly, I have argued that even when it may look as if we are day-dreaming, our minds actually may be hard at work engaged in cognitive niche construction—a way of using our brains that is possibly but not necessarily unique to our species (Terrell 2015).

Others recently have also written about cognitive niche construction, but what they evidently have in mind may be more clearly activity under the heading of System 2 thinking. Steven Pinker, for instance, has defined cognitive niche construction as “a mode of survival characterized by manipulating the environment through causal reasoning and social cooperation” (Pinker 2010: 8993).

Such a description glosses over how difficult it can be to apply what we envision in our mind’s eye to the realities of life. More to the point, such a definition does not confront the obvious weakness of cognitive niche construction at least as I have described it. What goes on between our ears when we are engaged in such mental activity does not have to be rational at all, at least not if by “rational” we mean thinking that makes practical sense in the real world outside our bodies.

A Paradox

By detaching from the realities of the moment and turning our mind to our inner thoughts, we are able to ponder what I like to call the “coulds & shoulds” of life. We can devote our mind to a kind of imaginary niche construction that does not even have to be “of this world” at all. We can see seemingly impossible things in our mind’s eye. We can engage in “what if” fantasies of remarkable, perhaps sexually charged, and even quite unrealistic complexity. We can invent imaginary worlds, invent new things, rewrite the story of our life to our heart’s content. All in the mind rather than in the real world.

In short, it seems likely we engage in cognitive niche construction not just for interpreting, responding to, and predicting environmental demands—to paraphrase what Raichle has previously said. As Spunt et al. observe: “Given that the DMN activity is metabolically costly, widely distributed in the cortex, and highly sensitive to both the presence and type of task demand, it should be no surprise that this network would have functional consequences in multiple domains” (Spunt et al., in press).

They themselves hypothesize that natural selection has favored the evolution of such a costly DMN in humans (and possibly also in chimpanzees and monkeys) so that we can more skillfully “see the world in terms of other minds” and live together socially—thereby gaining far more socially than would be likely by living separately.

While this is a plausible hypothesis, it is not the only one possible, as Gabriel Terrell and I will discuss in the forthcoming commentaries.


Editor’s note: This is the first in a series of eight commentaries at SCIENCE DIALOGUES on cognitive niche construction and its implications for psychology, philosophy, and the social sciences generally.

Next in this series: “Thinking about thinking 2. Through the looking-glass.”


References

Kahneman, Daniel (2011). Thinking: Fast and Slow. New York: Farrar, Straus and Giroux.

Odling-Smee, F. John, Kevin N. Laland, and Marcus W. Feldman (2003). Niche Construction. Princeton: Princeton University Press.

Pinker, Steven (2010). The cognitive niche: Coevolution of intelligence, sociality, and language. Proceedings of the National Academy USA 107, suppl. 2: 8993–8999.

Raichle, Marcus (2010). Two views of brain function. Trends in Cognitive Sciences 14: 180–190.

Raichle, Marcus (2015). The restless brain: How intrinsic activity organizes brain function. Philosophical Transactions of the Royal Society B 370: 20140172. http://dx.doi.org/10.1098/rstb.2014.0172

Spunt, Robert P., Meghan L. Meyer, and Matthew D. Lieberman (in press). The default mode of human brain function primes the intentional stance. Journal of Cognitive Neuroscience.

Terrell, John Edward (2015). A Talent for Friendship: Rediscovery of a Remarkable Trait. Oxford and New York: Oxford University Press.


John Edward Terrell is Regenstein Curator of Pacific Anthropology at The Field Museum, Chicago, IL 60605. His latest book A Talent for Friendship: Rediscovery of a Remarkable Trait was published on December 1, 2014 by Oxford University Press. Email address: terrell[at]fieldmuseum.org

© 2015 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.