Tag Archives: New Guinea

6,000-year-old skull could be from the world’s earliest known tsunami victim

Tsunamis spell calamity. These giant waves, caused by earthquakes, volcanic eruptions, and underwater landslides, are some of the deadliest natural disasters known; the 2004 tsunami in the Indian Ocean killed over 230,000 people, a higher death toll than any fire or hurricane. Scientists studying the effects of tsunamis have now shed light on what could be the earliest record of a person killed in a tsunami: an individual who lived 6,000 years ago in what is now Papua New Guinea in the southwest Pacific. This person’s skull was found in geological sediments having the distinctive hallmarks of ancient tsunami activity. This means, scientists posit in a new paper in PLOS One, that this skull could be from the earliest known tsunami victim.

Researchers explaining their project to people hunting for wild pig in Papua New Guinea near the location west of Aitape where the human skull had been discovered. Photo credit: Dr. Ethan Cochrane.

“If we are right about how this person died thousands of years ago, we have dramatic proof that living by the sea isn’t always a life of golden sunsets and great surfing conditions,” says John Terrell, Regenstein Curator of Pacific Anthropology at The Field Museum and one of the study’s authors. “Maybe this individual can help us as scientists to convince sceptics today that all of us on earth must take climate change and rising sea levels seriously as the threats they truly are.”

The skull in question was found deeply buried in the ground in 1929 near the small town of Aitape on the northern Sepik coast of Papua New Guinea about 500 miles north of Australia. Terrell has been doing archaeological and anthropological research in this coastal region of New Guinea, the second largest island in the world, since 1990. As a member of the international team of scientists behind this newly published study, he has long wondered what to make of this tantalizing human find.

“The skull has always been of great archaeological interest because it is one of the few early skeletal remains from the area,” says Mark Golitko of the University of Notre Dame and The Field Museum. “It was originally thought that the skull belonged to Homo erectus until the deposits were more reliably radiocarbon dated to about 5,000 to 6,000 years old. Back then, sea levels were higher and the area would have been just behind the shoreline.”

In 2014 Golitko and others went back to the exact place where this skull had been found to look for new clues about what killed this individual. “We have now been able to confirm what we have long suspected,” says James Goff at the University of New South Wales in Australia, the report’s first author. “The geological similarities between the sediments at the place where the skull was found and sediments laid down during the 1998 tsunami that hit this same coastline have made us realise that human populations in this area have been affected by these massive inundations for thousands of years.”

“Given the evidence we have in hand, we are more convinced than before that this person was either violently killed by a tsunami, or had his or her grave ripped open by one—leading to the head but not the rest of the body being naturally reburied where it then remained undiscovered in the ground for some 6,000 or so years,” explains Professor Goff.

“It is easy to be fooled by the great beauty of the Sepik coast of Papua New Guinea into thinking that surely this part of the world must be as close to paradise-on-earth as anybody could want. This skull is witness to the fact that here as elsewhere natural disasters can suddenly and unexpectedly turn the world upside down,” says Terrell.

This study was contributed to by scientists from the University of New South Wales, l’Université de Bourgogne-Franche-Comté, the University of Notre Dame, the University of Auckland, New Zealand’s National Institute of Water and Atmospheric Research, the University of Papua New Guinea, the Papua New Guinea National Museum and Art Gallery, and The Field Museum.

Racial migrations and human genetics: The “game changer” in the South Pacific that wasn’t – part 3

John Edward Terrell and Kevin M. Kelly


This is part 3 of a 3 part commentary


How many immigrants does it take to make a migration?

When presented with a sample comprising only 3+1 skulls, both scientific caution and parsimony suggest you should assume that colonists coming ashore back at the beginning of human history in Vanuatu and Tonga were probably more diverse, biologically speaking, than is witnessed by these four—at least until there is further evidence showing they did indeed come not just from a genetically homogeneous place of origin, but also a place where the inhabitants were as sui generis as they appear to be vis-à-vis others on earth (Skoglund et al. 2016: fig. 1b).

Logic such as this is well worth attending to. But in this instance, there is an equally logical way to get around the usual working assumption that people are likely to be more diverse than first appearances may suggest. Given how poorly specified are the two hypotheses under scrutiny here, it is anyone’s guess how big  we are supposed to think the boats must have been that brought early colonists to Vanuatu and Tonga around three thousand years ago. Even granting they may have arrived in more than one canoe, it would be reasonable to assume those arriving were fairly few in numbers. If so, then there is no need to assume blindly that those who came ashore in Vanuatu or Tonga constituted a representative (random) sample of the real human genetic diversity among those back home in the places where they came from, wherever on earth that was (Terrell 1986).

Furthermore, this is not all that might be reasonably assumed when trying to pin down the who, what, where, why, and when behind these four skulls. The number of pioneering colonists arriving  in canoes from elsewhere with them or before them may not only have been relatively few. They may also have been kin, i.e., biologically related to one another. If so, then possibly what makes these crania look sui generis in comparison with other people on earth, living and dead, may just be that we are seeing a “family resemblance” in these human remains (Terrell 1986; Walker and Hill 2014).

“Figure 1 New Guinea’s place in the southwestern Pacific (bathymetry downloaded from http://ingrid.ldeo.columbia.edu/SOURCES/ .WORLDBATH/.bath/based on the ETOPO5 5 · 5 min Navy data base).” Source: Terrell 2006: fig. 1
Homeward bound

For journalists and others, the real mystery of these remains, of course, is where these pioneers or their immediate forebears sailed from when they launched their boats to start a new life elsewhere. What is now known or can be reasonably assumed, therefore, about places to the west where they may have sailed from?

Until the Holocene stabilization of sea levels in the southwestern Pacific around 8,000–6,000 years ago, it is likely that much of the northern coastline of New Guinea was steep and uninviting of human settlement (as much of it still is today) except perhaps where favorable local circumstances may have at least temporarily trapped sediment in sandbars, coastal lagoons, and small river deltas. Little is currently known archaeologically about this coastline, which runs east-west for roughly 1,500 miles (2,400 km), and which would logically have been the most likely route between Asia and the farther reaches of the Pacific (Golitko et al. 2016). The best guess at the moment is that few people lived along this coast for the first 35,000–45,000 years of human history in the Pacific (Terrell 2006). In effect, earth and sea conspired to isolate New Guinea, like a sleeping giant, from frequent contact with islanders elsewhere both to the east in what is now popularly called Melanesia, and to the west in Island Southeast Asia (for biological support for this inference, see: Matisoo-Smith 2016: 391).

Following the Holocene stabilization of sea levels, however, coastal areas in Southeast Asia and the Pacific began to develop into rich floodplains, river deltas, and lagoons. By the mid Holocene, it is probable that people in the island realms to the east and west of New Guinea began to deal with one another back-and-forth more often as coastal people began to travel with greater reach along this immense island’s lengthy northern coastline (Torrence and Swadling 2008).

West meets East

Contrary to the notion that there are only two hypotheses about the prehistoric human settlement of the more remote islands in the Pacific east of New Guinea, there are numerous variants not only of those two old ideas but of others, too (for a recent review, see: Matisoo‐Smith 2016). Here we will introduce only one plausible reconstruction (Terrell, in press).

Initial baseline assumptions
  • Archaeologists now think people have been living in Southeast Asia for 50,000 years or so, and perhaps for not quite so long in the islands just east of New Guinea as far as Bougainville in the Northern Solomons.
  • The gradual flooding of the Sunda paleocontinent in what is now Southeast Asia since the Last Glacial Maximum ~21,000 years ago created extensive coastal environments that were ecologically rich and productive (Sathiamurthy and Voris 2006; Hanebuth et al. 2011: fig. 2). Similar extensive flooding did not occur in the area east of New Guinea labeled as Parkinson’s Islands (after the early ethnologist Richard Parkinson) on the map above (Lavery et al. 2016).
  • Due to this environmental advantage, it is probable that there were far more people living in Southeast Asia 6,000 years ago than there were in Parkinson’s Islands.
  • By the mid Holocene—contrary to the prevailing assumption in historical linguistics that doesn’t take this ecological advantage into consideration—it is probable that languages classifiable as Austronesian were widely spoken throughout Wallacea and elsewhere in Southeast Asia even as far north as Taiwan. But not yet in Parkinson’s Islands which had been isolated from Asia by the island of New Guinea.
  • Throughout the Late Pleistocene and early Holocene, Wallacea and Parkinson’s Islands were both areas of the Pacific where the advantages of travel by sea rather than by land nurtured the use of canoes and the development of local navigational methods and skills.
  • Canoes equipped with outriggers and sails were invented in Southeast Asia at some point in the Late Pleistocene or early Holocene. Simple dugout canoes remained the predominant boat type used for travel among coastal communities in Parkinson’s Islands.
Illustration taken from Labillardiere, (1800). Atlas pour servir a la relation du voyage de la recherche de la Perouse. Page Plate 43. Paris. Source: Labillardiere. (1800). Buka Island canoe (Solomon Islands) [digital image]. http://www.dspace.cam.ac.uk/handle/1810/239987 Modeling the relocation of immigrants from Wallacea
“The word proa comes from perahu, the word for “boat” in Malay.” Source: https://commons.wikimedia.org/wiki/File:Proa_(PSF).png
Modeling the relocation of immigrants from Wallacea
  1. A small Austronesian-speaking hamlet or village community left home for some particular local reason or reasons from somewhere in Wallacea—or possibly on the north coast of New Guinea—and made landfall in the Bismarck Archipelago.
  2. It is possible that wherever it was they came ashore, they arrived not as strangers but rather as old friends of some of the local people there in the Bismarcks (Terrell 2015).
  3. Among these immigrants were individuals skilled at pottery-making, and also skilled in the arts and rituals of building and sailing outrigger canoes with sails. Both of these technologies were new to the Bismarcks region. Moreover, such skills may not have arrived at the same time if travel back-and-forth between communities in Wallacea, northern New Guinea, and the Bismarcks became routine at least for awhile.
  4. The local people not only welcomed them, but often also acquired new ways of doing things—such as the art of pottery-making—from their immigrant neighbors, in some instances even their foreign language skills. The reverse may have also been true.
  5. Time passed, generations came and went. For now unknown reasons, it eventually became fashionable, prestigious, or perhaps even necessary for some people in the Bismarcks to set sail for islands yet farther to the south and east in the Pacific, although how many people in how many communities were involved, how often they sailed away, and for how many years this voyaging away from home in the Bismarcks went on are now all unknown and perhaps unknowable. 
  6. Even so, considering the passage of the time between (a) the first arrival of immigrants from the west and (b) the departure of some people generations later to settle down in other (more remote) places to the southeast, there is no reason to insist that these two separate episodes of human resettlement were similarly inspired or motivated (Walker and Hill 2014).
  7. Furthermore, given that both the voyaging technology and navigational skills required to colonize the more remote islands of the Pacific may have been available then only in some communities in the Bismarcks, it is not surprising that early settlers in Vanuatu, Tonga, and elsewhere had similar material culture traits (i.e., the so-called “Lapita cultural complex”).
Conclusions

Because the first immigrants who reached Vanuatu and Tonga were entering a vast and uninhabited part of the Pacific, it is probably not surprising that many nowadays have been seduced by the modern global distribution of Austronesian languages—from Madagascar to Rapa Nui (Easter Island) and from New Zealand to Taiwan—into thinking that such a vast geographic compass could only be the historical product of some kind of massive human migration that was singularly intentional and singularly premeditated from the very moment the first Austronesian-speaking immigrant stepped into the first canoe to sail from somewhere in island Southeast Asia  or on the north coast of New Guinea to the Bismarcks 3,000 and more years ago. It is wise to remember, therefore, that appearances can be deceiving.

Furthermore, today we know nothing about marriage (or sexual) practices in the Pacific in the prehistoric past. Although it is stating the case too simply, we do know that the basic building block of human genetic relatedness is the gene. Anyone who knows about the birds and the bees knows that genes can travel far and wide through sexual intercourse even if the people carrying them may only get as far away from home during their time on earth as the next village or two down the road. Consequently, there is no a priori reason to assume that race = language = culture. Or that genes necessarily traveled the Pacific millennia ago as the exclusive and enduring “property” of a massive and self-contained ethnic or ethnolinguistic migration that was able to keep its collective act together over thousands of miles and for hundreds, even thousands, of years. As some anthropologists like to say it, we need models of Pacific prehistory to work with that are “on the ground,” not “pie in the sky.”

Although we have been talking here almost exclusively about the Pacific Islands, the issue at stake is a global one. It is not just worrisome to find that even scientists may sometimes be unaware of the intellectual racism hidden in the conviction that the story of our species is a tale about ancestry, ancient migrations, and admixture. Commonsense ideas like these can be more than misleading. They can lend credence to other notions and old prejudices that can be harmful and sometimes deadly.  

Acknowledgments

We thank Ethan Cochrane, Mark Golitko, Tyrone Lavery, Lisa Matisoo-Smith, and Robin Torrence for assistance in the preparation of this 3-part commentary.

References

Bellwood, Peter. 2011. Holocene population history in the Pacific region as a model for worldwide food producer dispersals. Current Anthropology 52: S363–S378.

Gibbons, Ann. 1994. Genes point to a new identity for Pacific pioneers. Science 263: 32–33, p. 32.

Gibbons, Ann. 2001. The peopling of the Pacific. Science 291: 1735–1737.

Golitko, Mark, Ethan E. Cochrane, Esther M. Schechter, and Jason Kariwiga. 2016. Archaeological and Palaeoenviromental Investigations Near Aitape, Northern Papua New Guinea, 2014. Journal of Pacific Archaeology 7: 139–150.

Green, Roger C. 2003. The Lapita horizon and traditions – signature for one set of oceanic migrations. In C. Sand (ed.), Pacific Archaeology: Assessments and Prospects. Le Cahiers de l’Archéologie en Nouvelle-Calédonie 15. Nouméa: Service de Musées et du Patrimoine de Nouvelle-Calédonie, pp. 95-120.

Hanebuth, Till JJ, Harold K. Voris, Yusuke Yokoyama, Yoshiki Saito, and Jun’ichi Okuno. 2011. Formation and fate of sedimentary depocentres on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications. Earth-Science Reviews 104: 92-110.

Lavery, Tyrone H., Andrew D. Olds, Jennifer M. Seddon, and Luke K‐P. Leung. 2016. The mammals of northern Melanesia: speciation, ecology, and biogeography.” Mammal Review 46: 60–76.

Matisoo-Smith, Elizabeth A. 2016. Human biology and population histories in the Pacific–Is there such thing as a Lapita people?. In: The Routledge Handbook of Bioarchaeology in Southeast Asia and the Pacific Islands, edited by M. Oxenham and H. Buckley, pp. 389–408. Routledge, London.

Sathiamurthy, E. V. H. K., and Harold K. Voris. 2006. Maps of Holocene sea level transgression and submerged lakes on the Sunda Shelf. The Natural History Journal of Chulalongkorn University, Supplement 2: 1-43.

Skoglund, Pontus, Cosimo Posth, Kendra Sirak, Matthew Spriggs, Frederique Valentin, Stuart Bedford, Geoffrey R. Clark, et al. 2016. Genomic insights into the peopling of the Southwest Pacific. Nature 538: 510–513.

Specht, Jim, Tim Denham, James Goff, and John Edward Terrell. 2014. Deconstructing the Lapita cultural complex in the Bismarck Archipelago. Journal of Archaeological Research 22: 89-140.

Specht, Jim, Chris Gosden, Carol Lentfer, Geraldine Jacobsen, Peter J. Matthews, and Sue Lindsay. 2016. A pre-Lapita structure at Apalo, Arawe Islands, Papua New Guinea. The Journal of Island and Coastal Archaeology: 1-22.

Terrell, John. 1986. Causal pathways and causal processes: Studying the evolutionary prehistory of human diversity in language, customs, and biology. Journal of Anthropological Archaeology 5: 187-198.

Terrell, John Edward. 2006. Human biogeography: Evidence of our place in nature. Journal of Biogeography 33: 2088-2098.

Terrell, John Edward. 2015. A Talent for Friendship. Oxford University Press.

Terrell, John Edward. In press. Understanding Lapita as history. In Oxford Handbook of Prehistoric Oceania, edited by Ethan Cochrane and Terry Hunt. Oxford University Press.

Terrell, John Edward, John Edward, Terry L. Hunt, and Chris Gosden. 1997. The dimensions of social life in the Pacific: Human diversity and the myth of the primitive isolate. Current Anthropology 38: 155–195.

Terrell, John Edward, Kevin M. Kelly, and Paul Rainbird. 2001. Foregone conclusions: In search of “Austronesians” and “Papuans.” Current Anthropology 42: 97–124.

Torrence, Robin, and Pamela Swadling. 2008. Social networks and the spread of Lapita. Antiquity 82: 600–616.

Walker, Robert S., and Kim R. Hill. 2014. Causes, consequences, and kin bias of human group fissions. Human Nature 25: 465-475.

© 2017 John Edward Terrell and Kevin M. Kelly. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Racial migrations and human genetics: The “game changer” in the South Pacific that wasn’t – part 2

John Edward Terrell and Kevin M. Kelly


This is part 2 of a 3 part commentary


Necessary, plausible, and sufficient

Nobody, as far as we know, has come up with a universally accepted checklist of what makes a scientific hypothesis about anything something worth paying attention to. There are three criteria, however, that strike us as items that ought to be on such a checklist. Here is how we see these three applying to the conclusions now being made about the biological origins of the Polynesians.

Visualization by David Eccles of the two popularly assumed racial migrations from Asia out into the Pacific. Source: https://commons.wikimedia.org/wiki/File:Polynesian_Migration.svg
  1. Necessity: What needs to be explained? Both of the hypotheses weighed by the 31 contributors to the paper in Nature (Skoglund et al. 2016) under discussion here are alternative ways of trying to understand certain widely accepted observations about islanders in the Pacific: (a) people in Polynesia speak languages assigned by linguists to the Austronesian (Malayo-Polynesian) family, as do many people in Melanesia and Island Southeast Asia; (b) archaeologists now generally agree that what they have labeled the “Lapita cultural complex”* dating to ca 3300–2800 cal BP (Specht et al. 2016) exhibits a mix of cultural traits, some local to Melanesia and others apparently having roots to the west in Island Southeast Asia (Specht et al. 2014); and (c) the Lapita skulls found in Vanuatu and Tonga are morphologically and genetically sui generis (as the authors of this paper note, in some respects these four individuals are unique unto themselves).
  2. Plausibility: The two hypotheses considered by this consortium of scholars differ in their plausibility. (a) The idea that people traveled directly from Taiwan to Vanuatu and Tonga is basically impossible to assess given that nothing is said about how they might have done so—a striking omission considering the major dimensions of space and time involved. (b) The second hypothesis put on the table is similarly deficient, but it at least acknowledges that the set of material culture traits associated with the four Lapita skeletons in Vanuatu and Tonga wasn’t  imported in toto direct from Taiwan.
  3. Sufficiency: As Richard Levins observed years ago, truth is the intersection of independent lies. (a) Not only are the two hypotheses considered by this consortium of authors basically left unspecified, but (b) no reason is given for limiting the field of possible hypotheses solely to the two considered by these contributors.
The problem of equifinality

In light of #2 and #3 just noted, consider the old cliché “there is more than one way to skin a cat.” If you are a feline lover, there is even another way of saying more or less the same thing. As the biologist Ludwig von Bertalanffy made famous in the last century, you can call it equifinality. However phrased, it is wise to remember there is usually more than one way to get from A to Z, or even just A to B. The corollary relevant to the present discussion is that one cannot just assert that B came from A without offering a sufficient explanation for how that would have been possible. And more to the point, granting for the sake of discussion that B did somehow come from A, the scientific way of doing the job that needs to be done entails offering more than just 1–2 inadequately specified hypotheses.

The absence of evidence is not evidence of absence

According to these 31 authors: “our modelling indicates that Philippine populations (Kankanaey) are the closest outgroup to the First Remote Oceanians [i.e., these 4 skulls], indigenous Taiwanese (Atayal) second closest, and mainland southeast Asians such as the Dai most remote, consistent with models of population movement along a route from Taiwan to the Philippines to Near Oceania to Remote Oceania.” Maybe yes, maybe no.

Recall that only 14 of the 83 places in their modern comparative genetics sample are located in Island Southeast Asia, and none of the other 69 localities included in their analysis is in the region between the Philippines and northern New Guinea except for a single sample of 10 individuals from Sulawesi. Now look at a map of the region in question (see below).

“Figure 1 | Data from ancient and present-day populations. a, Locations of 778 present-day individuals genotyped on the Affymetrix Human Origins Array and 4 ancient individuals (red symbols).” Source: Skoglund et al. 2016: fig. 1a. Note: blue letters A and B added to the original.

Note two things, in particular. First, if it is true, as the song goes, that it’s a long, long way to Tipperary, then it is an even longer way from (A) Taiwan to (B) Tonga—more than 5,300 miles (8,500 km) in a straight line if a bee could fly that way that far. Second, notice the total lack of genetics samples from the big gap between the Philippines and the Bismarck Archipelago east of New Guinea (the few samples from New Guinea don’t count for reasons we will not go into here).

You don’t have to be a grumpy skeptic, therefore, to ask: if the four Lapita skulls from Vanuatu and Tonga look genetically most like people today in the Philippines, what about folks today, say, in the Moluccas and Halmahera off the Bird’s Head region of western New Guinea? And possibly also people living along  the north coast of New Guinea itself? Must we assume these four individuals from Vanuatu and Tonga somehow came all the way from Taiwan or the Philippines to come ashore there?[*]

Part 3: How many immigrants does it take to make a migration?


* The three skulls from Vanuatu were not found with the rest of their skeletons (Skoglund et al. 2016: supplementary notes). How they had been buried as well as their condition as skulls prior to burial suggest they had been cared for as portable heirlooms for an unknown period of time after death: “Ancient DNA was successfully obtained from three skulls from striking mortuary contexts: a jar burial containing a single skull (B17), an alignment of three skulls lying on the chest of a skeleton without a skull (B10B)”. There is a possibility that these individuals might have been long dead before their skulls arrived in Vanuatu. In contrast, with regard to the single individual from Tonga: “Ancient DNA was successfully obtained from the right petrous bone of burial SK10, a single primary interment of an adult female . . .”.


References

Bellwood, Peter. 2011. Holocene population history in the Pacific region as a model for worldwide food producer dispersals. Current Anthropology 52: S363–S378.

Gibbons, Ann. 1994. Genes point to a new identity for Pacific pioneers. Science 263: 32–33, p. 32.

Gibbons, Ann. 2001. The peopling of the Pacific. Science 291: 1735–1737.

Golitko, Mark, Ethan E. Cochrane, Esther M. Schechter, and Jason Kariwiga. 2016. Archaeological and Palaeoenviromental Investigations Near Aitape, Northern Papua New Guinea, 2014. Journal of Pacific Archaeology 7: 139–150.

Green, Roger C. 2003. The Lapita horizon and traditions – signature for one set of oceanic migrations. In C. Sand (ed.), Pacific Archaeology: Assessments and Prospects. Le Cahiers de l’Archéologie en Nouvelle-Calédonie 15. Nouméa: Service de Musées et du Patrimoine de Nouvelle-Calédonie, pp. 95-120.

Hanebuth, Till JJ, Harold K. Voris, Yusuke Yokoyama, Yoshiki Saito, and Jun’ichi Okuno. 2011. Formation and fate of sedimentary depocentres on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications. Earth-Science Reviews 104: 92-110.

Lavery, Tyrone H., Andrew D. Olds, Jennifer M. Seddon, and Luke K‐P. Leung. 2016. The mammals of northern Melanesia: speciation, ecology, and biogeography.” Mammal Review 46: 60–76.

Matisoo-Smith, Elizabeth A. 2016. Human biology and population histories in the Pacific–Is there such thing as a Lapita people?. In: The Routledge Handbook of Bioarchaeology in Southeast Asia and the Pacific Islands, edited by M. Oxenham and H. Buckley, pp. 389–408. Routledge, London.

Sathiamurthy, E. V. H. K., and Harold K. Voris. 2006. Maps of Holocene sea level transgression and submerged lakes on the Sunda Shelf. The Natural History Journal of Chulalongkorn University, Supplement 2: 1-43.

Skoglund, Pontus, Cosimo Posth, Kendra Sirak, Matthew Spriggs, Frederique Valentin, Stuart Bedford, Geoffrey R. Clark, et al. 2016. Genomic insights into the peopling of the Southwest Pacific. Nature 538: 510–513.

Specht, Jim, Tim Denham, James Goff, and John Edward Terrell. 2014. Deconstructing the Lapita cultural complex in the Bismarck Archipelago. Journal of Archaeological Research 22: 89-140.

Specht, Jim, Chris Gosden, Carol Lentfer, Geraldine Jacobsen, Peter J. Matthews, and Sue Lindsay. 2016. A pre-Lapita structure at Apalo, Arawe Islands, Papua New Guinea. The Journal of Island and Coastal Archaeology: 1-22.

Terrell, John. 1986. Causal pathways and causal processes: Studying the evolutionary prehistory of human diversity in language, customs, and biology. Journal of Anthropological Archaeology 5: 187-198.

Terrell, John Edward. 2006. Human biogeography: Evidence of our place in nature. Journal of Biogeography 33: 2088-2098.

Terrell, John Edward. 2015. A Talent for Friendship. Oxford University Press.

Terrell, John Edward. In press. Understanding Lapita as history. In Oxford Handbook of Prehistoric Oceania, edited by Ethan Cochrane and Terry Hunt. Oxford University Press.

Terrell, John Edward, John Edward, Terry L. Hunt, and Chris Gosden. 1997. The dimensions of social life in the Pacific: Human diversity and the myth of the primitive isolate. Current Anthropology 38: 155–195.

Terrell, John Edward, Kevin M. Kelly, and Paul Rainbird. 2001. Foregone conclusions: In search of “Austronesians” and “Papuans.” Current Anthropology 42: 97–124.

Torrence, Robin, and Pamela Swadling. 2008. Social networks and the spread of Lapita. Antiquity 82: 600–616.

Walker, Robert S., and Kim R. Hill. 2014. Causes, consequences, and kin bias of human group fissions. Human Nature 25: 465-475.

© 2017 John Edward Terrell and Kevin M. Kelly. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Racial migrations and human genetics: The “game changer” in the South Pacific that wasn’t – part 1

John Edward Terrell and Kevin M. Kelly


Here’s a hint about why scholars can be so captivated by what is basically an old-fashioned racial migration argument. They are apparently forgetting what they have been taught about the difference between a rhetorical argument and a scientific one.

The is part 1 of a 3 part commentary


THE IDEA THAT ONCE UPON A TIME the many islands of the South Pacific were colonized by different racial migrations out of Asia or the Americas (the latter a minority view) is as old as the hills. Or at any rate, at least as old as the earliest known encounters after 1492 between Europeans and the people living there.

1852 Bocage Map of Australia and Polynesia. The colored boundary lines show how this part of the world has long been subdivided into four cartographic regions labeled here as Malaisie (Malaysia), Micronesie (Micronesia), Polynesie (Polynesia), and Melanesie (Melanesia). Source: https://upload.wikimedia.org/wikipedia/commons/a/a2/1852_Bocage_Map_of_Australia_and_Polynesia_-_Geographicus_-_Oceanie-bocage-1852.jpg

The apparent remoteness and isolation of these islands and their inhabitants have long fueled the notion that here, if not necessarily elsewhere on earth, “race, language, and culture” all formerly tracked one another so closely that today, for instance, language differences can still be used successfully—and scientifically—not only to circumscribe and label separate “populations” in the Pacific (e.g., as different “ethnolinguistic groups,” ‘races,” and the like), but can also tell us how to reconstruct the prehistory and ancient migrations of separate and distinct “peoples” out into Oceania (Terrell et al. 1997).

It is generally considered impolite to say so, but the conventional word for this type of thinking is the word racism.

What seems astonishing is that racial thinking like this still frames how archaeologists, linguists, historians, social anthropologists, and human geneticists think about Pacific Islanders and write about their past. The most recent instance of this almost universal practice is possibly also the most revealing example of why otherwise informed scholars find themselves still under the spell of such an antiquated and unscientific idea.

Melanesians and Polynesians

As early as 1813 James Cowles Prichard was formally proposing—as others had earlier done more anecdotally—that the inhabitants of the Pacific Islands starting with New Guinea and neighboring places and moving on out eastward could be divided into “two principal classes.” In his own words (quoted in: Terrell et al. 2001):

The tribes which belong to the first of these are, strictly speaking, savages. They are universally in that rude unimproved state, which precedes all division of professions and employments. Consequently their political condition is that of perfect equality without any difference of ranks. Their physical character is of the rudest kind. Their form and complexion
approximate to those of the Negro.

Pritchard called these rude savages “the race of the Papuas.” Others would come to favor instead the term “Melanesians” (i.e., “black islanders”). He did not offer a name to use for the other—and supposedly superior—class of people except to say that such tribes were to be found in “the more distant regions of the Pacific Ocean.”

By 1843, his uncertainty about how to label the latter class of tribes had been resolved in favor of calling them “Malayo-Polynesians” since by then “a real kindred, or community of origin” had been established “by affinity of language” between islanders in Southeast Asia (i.e., “Malays”) and those in the more remote parts of Oceania, who were by then often labeled as Polynesians (i.e., “people of the many islands”).

Today the favorite label for the “affinity of language” noted by Pritchard and others in the 19th century between people in Polynesia and some of the inhabitants of Island Southeast Asia is the linguist’s label Austronesian.  Nowadays, too, those said to be in Pritchard’s so-called class of savages are generally called “Papuans,” although the label “Melanesians” is also still used by some.

Racial redux

Under the headline “‘Game-changing’ study suggests first Polynesians voyaged all the way from East Asia,” Ann Gibbons, a writer at Science magazine who had written previously about the origins of the Polynesians (Gibbons 1994, 2001), announced in surprisingly unqualified terms on 3 October 2016 that the identity of the first settlers of Polynesia was at last known, thanks to a paper then just published in Nature reporting on the first genome‑wide study of ancient DNA from  prehistoric Polynesians (Skoglund et al. 2016). Lo and behold, their ancestors were ancient East Asian mariners “who swept out into the Pacific. It wasn’t until much later that Melanesians, probably men, ventured out into Oceania and mixed with the Polynesians.”

To clinch the story, she then quotes experts who apparently ought to know what they are talking about.

“The paper is a game‑changer,” says Cristian Capelli, a population geneticist at the University of Oxford in the United Kingdom, noting that that it settles a decades‑long dispute. By showing that the East Asians hopscotched past islands already populated by Melanesians without picking up their genes, it is also a case study in how culture can initially bar mixing between groups. “Farmers move in and don’t mix much with the hunter‑ gatherers,” says evolutionary geneticist Mark Thomas of University College London. “We see this again and again and again” elsewhere in the world.

Not so fast

The late population geneticist and mathematical ecologist Richard Levins is famous in scientific circles for once having declared in no uncertain terms that “truth is the intersection of independent lies.’’  Given that what Gibbons, Capelli, and Thomas are saying is intellectually—if not necessarily politically—racist, why are they so confident? Particularly since the claim being endorsed is based on DNA extracted from only four skulls dating to around 3,000 or so years ago (three from Vanuatu, and one from the Tongan Islands) compared with the DNA of less than 800 present-day individuals from 83 places in Asia and Oceania.

To a cautious statistical mind, such figures ought to raise the worry that not enough is known about human genetic variation in this part of the world to warrant going far out on a limb by declaring resolutely that science has now told us not only where the ancestors of the Polynesians came from, but also how.

Add to this concern the additional information that all four of the women in the archaeological sample from the Pacific display their strongest apparent genetic ties with Taiwan—currently the most popular place to start the purported ancient migration to Polynesia—and with the Philippines.* Does a modern comparative DNA sampling of 778 individuals from 83 places in Asia and Oceania tell us enough about genetic similarities and differences throughout this immense region to overrule the reasonable doubt that linking the four prehistoric women with present-day people in Taiwan and the Philippines wasn’t exactly an unpredictable finding? Isn’t it reasonable to suspect this study might be biased, i.e., is an example of looking specifically for something—a genetic connection with Taiwan, in particular—where you most hope to find it?

Two alternative stories

The research report in Nature that Ann Gibbons wrote about in Science last October has 31 credited authors, a global mix of geneticists and archaeologists. Their report starts off with the assertion: “Pacific islanders today derive from a mixture of two highly divergent ancestral populations.” These authors then go on to tell us that there are two alternative stories—they call them hypotheses—about these two primal races (a word they do not use), and they say they now know which of the two to believe.

Both stories accept as true the unstated premise that biology, language, and culture co-vary closely with one another. The first story is an old tale still favored by some archaeologists (Bellwood 2011). If (a) race, language, and culture co-vary, and (b) Polynesians today speak languages of Southeast Asian origin (i.e., Austronesian, formerly called “Malayo-Polynesian”), then (c) it follows that the ancestors of the Polynesians came from Southeast Asia.  The second story is a more recent alternative reconstruction of Polynesian origins (Green 2003). If (a) race, language, and culture co-vary, and (b) the so-called “Lapita cultural complex” archaeologically associated with the first settlers of Polynesia is a cultural mix of Southeast Asian and Melanesian traits, then (c) the Polynesians racially must also be of similarly mixed biological origin.

Needless to say, these collaborators would not have written their report if they had found they couldn’t adjudicate the right choice between these two alternative stories. And they do not disappoint us: “Our study has shown that many of the first humans in Remote Oceania had little, if any, Papuan ancestry, in stark contrast [an odd choice of words?] to the situation today.” And if so, the second story evidently can’t be correct, right?

But this is not all they have to conclude. In their estimation: “Systematic study of ancient DNA from throughout Remote Oceania should make it possible to provide a detailed chronicle of the population movements and sex-biased population mixtures that shaped the ancestry of present-day Oceanians.”

Should we accept as true what they tell us? Is there a better way to think about what they report? In other words, what’s the chance they have been barking up the wrong stories altogether?

Part 2: Necessary, plausible, and sufficient


*  Only 14 of the 83 places in their comparative sample are located in Island Southeast Asia; 2 of these are on Taiwan and 6 in the Philippines. None of the other 69 localities is in the region between the Philippines and northern New Guinea except for a single sample of 10 individuals from Sulawesi. We return to these figures in Part 2 of this commentary.


References

Bellwood, Peter. 2011. Holocene population history in the Pacific region as a model for worldwide food producer dispersals. Current Anthropology 52: S363–S378.

Gibbons, Ann. 1994. Genes point to a new identity for Pacific pioneers. Science 263: 32–33, p. 32.

Gibbons, Ann. 2001. The peopling of the Pacific. Science 291: 1735–1737.

Golitko, Mark, Ethan E. Cochrane, Esther M. Schechter, and Jason Kariwiga. 2016. Archaeological and Palaeoenviromental Investigations Near Aitape, Northern Papua New Guinea, 2014. Journal of Pacific Archaeology 7: 139–150.

Green, Roger C. 2003. The Lapita horizon and traditions – signature for one set of oceanic migrations. In C. Sand (ed.), Pacific Archaeology: Assessments and Prospects. Le Cahiers de l’Archéologie en Nouvelle-Calédonie 15. Nouméa: Service de Musées et du Patrimoine de Nouvelle-Calédonie, pp. 95-120.

Hanebuth, Till JJ, Harold K. Voris, Yusuke Yokoyama, Yoshiki Saito, and Jun’ichi Okuno. 2011. Formation and fate of sedimentary depocentres on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications. Earth-Science Reviews 104: 92-110.

Lavery, Tyrone H., Andrew D. Olds, Jennifer M. Seddon, and Luke K‐P. Leung. 2016. The mammals of northern Melanesia: speciation, ecology, and biogeography.” Mammal Review 46: 60–76.

Matisoo-Smith, Elizabeth A. 2016. Human biology and population histories in the Pacific–Is there such thing as a Lapita people?. In: The Routledge Handbook of Bioarchaeology in Southeast Asia and the Pacific Islands, edited by M. Oxenham and H. Buckley, pp. 389–408. Routledge, London.

Sathiamurthy, E. V. H. K., and Harold K. Voris. 2006. Maps of Holocene sea level transgression and submerged lakes on the Sunda Shelf. The Natural History Journal of Chulalongkorn University, Supplement 2: 1-43.

Skoglund, Pontus, Cosimo Posth, Kendra Sirak, Matthew Spriggs, Frederique Valentin, Stuart Bedford, Geoffrey R. Clark, et al. 2016. Genomic insights into the peopling of the Southwest Pacific. Nature 538: 510–513.

Specht, Jim, Tim Denham, James Goff, and John Edward Terrell. 2014. Deconstructing the Lapita cultural complex in the Bismarck Archipelago. Journal of Archaeological Research 22: 89-140.

Specht, Jim, Chris Gosden, Carol Lentfer, Geraldine Jacobsen, Peter J. Matthews, and Sue Lindsay. 2016. A pre-Lapita structure at Apalo, Arawe Islands, Papua New Guinea. The Journal of Island and Coastal Archaeology: 1-22.

Terrell, John. 1986. Causal pathways and causal processes: Studying the evolutionary prehistory of human diversity in language, customs, and biology. Journal of Anthropological Archaeology 5: 187-198.

Terrell, John Edward. 2006. Human biogeography: Evidence of our place in nature. Journal of Biogeography 33: 2088-2098.

Terrell, John Edward. 2015. A Talent for Friendship. Oxford University Press.

Terrell, John Edward. In press. Understanding Lapita as history. In

Oxford Handbook of Prehistoric Oceania, edited by Ethan Cochrane and Terry Hunt. Oxford University Press.

Terrell, John Edward, John Edward, Terry L. Hunt, and Chris Gosden. 1997. The dimensions of social life in the Pacific: Human diversity and the myth of the primitive isolate. Current Anthropology 38: 155–195.

Terrell, John Edward, Kevin M. Kelly, and Paul Rainbird. 2001. Foregone conclusions: In search of “Austronesians” and “Papuans.” Current Anthropology 42: 97–124.

Torrence, Robin, and Pamela Swadling. 2008. Social networks and the spread of Lapita. Antiquity 82: 600–616.

Walker, Robert S., and Kim R. Hill. 2014. Causes, consequences, and kin bias of human group fissions. Human Nature 25: 465-475.

© 2017 John Edward Terrell and Kevin M. Kelly. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Social network analysis: Hypothesis testing and what-if projections

John Edward Terrell


Please note: this commentary, recovered on 28-Jan-2017, was originally published in Science Dialogues on 13-June-2014.


GIVEN A RELIABLE DATABASE of information and a good computer program (such as Microsoft Excel), it is possible today to simulate a broad range of hypothetical real-world situations under differing possible opening and subsequent conditions (Embrechts and Hofet 2014). Said differently, by changing the parameters and values of a spreadsheet in meaningful ways it is possible to do informative what-if analyses of many kinds of situations—thereby gaining better understanding not only of possible but also plausible outcomes.

Similarly, it is possible to use a good network analysis program (such as UCINET; Borgatti et al. 2013) to simulate differing social situations and their plausible impacts. Here briefly described is one example based on research currently being done to explore the history of social networks along the north coast of Papua New Guinea.

Research question

During the last glacial maximum (~21,000 BP), sea-levels were ~125 m (410 ft) lower than they are today. It is likely that New Guinea’s northern coast was mostly a steep rocky shoreline offering few resources supporting human settlements (Chappell 1982).  As one consequence, New Guinea during the last Ice Age served more as a vicariant barrier than a land bridge between Asia and island Oceania (Terrell 2004).

Figure 1. New Guinea is the second largest island in the world. The northern coastline is over 1,600 miles (2,600 km) long. Shown here in comparison with the 48 mainland states in the U.S.A.

Both historical and archaeological evidence (Welsch and Terrell 1998; Terrell and Schechter 2011) suggests that villages on the northern coastline of New Guinea and the nearby offshore islands have been linked with one another by far-reaching social and economic networks for the past 2,000 years. An obvious and historically important question, therefore, is whether people and places there in the more distant past were similarly integrated in comparable widely-distributed communities of practice (Terrell n.d.).After the last Ice Age, however, sea levels rose steadily and then began to stabilize around their modern levels ~6,000–7,000 years ago. The resulting formation of coastal plains and environmentally productive lagoons and estuaries led to peak biodiversity (Hope and Haberle 2005) and probably also peak human population densities along this coastline between ~4000–2000 BP.

Materials and methods

Figure 2 shows two mini-max networks (Cochrane and Lipo 2010) drawn using UCINET 6 (version 6.289) and NetDraw (version 2.109) with the edges weighted at two different thresholds. The upper network shows the connectivity of places in this region given a maximal customary voyaging distance of 220 km or less—the greatest distance known to have been locally traversed during the Pleistocene and the mid-Holocene prior to ~3300 BP (Golitko and Terrell n.d.). The lower network has a threshold of 360 km—the greatest voyaging distance (from Makira-Ulawa in the Solomon Islands to Temotu in the Reefs/Santa Cruz group) documented as having been crossed during the first settlement of Remote Oceania ~3300–3100 BP (Irwin 1992).

Also shown in this figure are (a) the network positions (blue) of this region’s major sources of obsidian, a volcanic glass widely transported both historically and prehistorically in this region of the world; and (b) the location of our study area (red) on this coast in the Aitape district (Terrell and Schechter 2011).

Figure 2. Connectivity of obsidian sources (blue nodes) and Aitape (red node) on the Sepik coast of Papua New Guinea. Top: when the edge distance is 220 km or less; bottom: when it is 360 km or less (baseline image source: Mark L. Golitko). Likely cut lines in these networks projected using the Girvan-Newman algorithm (Girvan and Newman 2002) are shown here as heavy black lines. The same four groupings in the upper mapping occur at any assumed what-if linkage distance between 186 and 270 km.
Network analysis

Given these analyses, it is readily apparent that the what-if connectivity of these mappings differs markedly. Under the upper scenario, it can be hypothesized that obsidian from sources southeast of Aitape (they are on New Britain Island) has probably been transported from place to place at least as far west as Aitape, but it is less likely that obsidian from the other sources—located in the Admiralty Islands—has also arrived there despite the fact that these sources are geographically closer to our study area. The situation is different in the lower mapping. Instead of four probable groupings within the network shown, there are only two, and given this scenario, when obsidian has reached Aitape, it is more likely to have been mined at the nearer Admiralty sources.

Hypothesis testing

The presence of Admiralty Islands obsidian at prehistoric sites has not been securely documented archaeologically outside the Admiralty Group earlier than the mid 2nd millennium B.C. Its widespread popularity at Aitape and elsewhere in this part of the world thereafter is generally associated with suspected improvements in canoe-making design and technology thought to have been introduced from Island Southeast Asia around this same time (Specht et al. 2014; Terrell n.d.). However, it is also generally accepted that the movement of animals, obsidian, and people between islands and coastal villages was characteristic of life in this part of the world for many millennia before then—in other words, the suspected improvements in watercraft design and voyaging prowess did not initiate coastal and inter-island mobility in this region but instead made longer-distance travel more feasible and routine (Specht et al. 2014).

Figure 3. The actual geographic locations of the obsidian sources (blue dots) and the study area (red dot) at Aitape on the Sepik coast of Papua New Guinea.

While obsidian from Admiralty sources has been found at archaeological sites on the north coast of New Guinea that are younger than ~2000 BP, almost all of the obsidian that has been recovered archaeologically on mainland New Guinea older than ~3,500 BP has been sourced to the the Kutau/Bao locality on the Willaumez Peninsula of western New Britain (Summerhayes 2009).

Our fieldwork at Aitape in 1993/1994 and 1996 supported by the National Science Foundation ((BNS-8819618 and DBS-9120301)  discovered large quantities of obsidian and chert at localities along the former mid-Holocene shoreline (which at Aitape is now located several kilometers inland) including assemblages with notably high frequencies of  obsidian from New Britain marked by large average flake sizes (Golitko 2011)—an archaeological signature consistent with pre-2000 BP obsidian assemblages found elsewhere in northern Melanesia (Summerhayes 2009).

Therefore, given our two what-if network analyses and this archaeological evidence it may be hypothesized that obsidian has probably been indirectly available to people living in what is now the Aitape district ever since the stabilization of world sea levels around 6,000–7,000 years ago, but it is likely that the major sources of this natural glass prior to ~3,500 BP were those located on New Britain.

With funding from the National Science Foundation my colleague Dr. Mark Golitko is currently (June–July 2014) leading a research team at Aitape that is surveying archaeological sites there on the mid-Holocene (~5000 BP) shoreline (as reconstructed from estimated local uplift rates and sea-level records) to document how far-reaching or alternatively how restricted were cultural and material exchanges on this coast at that time. Discovering how isolated or widely linked communities at Aitape were during the mid-Holocene is  critical to understanding the patterning of modern human diversity in northern New Guinea and elsewhere in the Pacific (Terrell 2010a, 2010b).

Conclusions

Obsidian has long been a popular although largely nonessential raw material in the Pacific (as elsewhere on earth) despite the fact that alternative and equally useful cutting materials (such as bamboo) are readily available. Hence the ancient transport of obsidian through inter-community networks is commonly interpreted by archaeologists as more a social phenomenon than a practical (“economic”) necessity (Torrence 2011). As suggested by the what-if analyses discussed here, we anticipate  that Golitko and his team will discover this summer that obsidian was reaching communities on the Sepik coast well before ~3,500 BP.

Funding for this research was provided by National Science Foundation Grant No. BCS-1155338–”Archaeological and Environmental Investigations along the mid-Holocene shoreline near Aitape, Northern Papua New Guinea,” Mark L. Golitko and John E. Terrell.
References:

Borgatti, S. P., M. G. Everett, and J. C. Johnson. 2013. Analyzing social networks. Los Angeles: Sage.

Chappell, J. 1982. Sea levels and sediments: some features of the context of coastal archaeological sites in the Tropics. Archaeology in Oceania 17:69–78.

Cochrane, E. E. and C. P. Lipo. 2010. Phylogenetic analyses of Lapita decoration do not support branching evolution or regional population structure during colonization of Remote Oceania. Philosophical Transactions of the Royal Society B 365:3889–3902.

Embrechts, P. and M. Hofet. 2014. Statistics and quantitative risk management for banking and insurance.  Annual Review of Statistics and It Application 1: 493–514.

Girvan, M. and M. E. J. Newman. 2002. Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99:7821–7826.

Golitko, M. 2011. Provenience Investigations of Ceramic and Obsidian Samples Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Portable X-Ray Fluorescence. In Exploring prehistory on the Sepik coast of Papua New Guinea, J. E. Terrell and E. M. Schechter, eds., pages 251–287. Fieldiana Anthropology New Series No. 42. Chicago: Field Museum of Natural History.

Golitko, M. and J. E. Terrell. n.d. Modeling cultural patterning and prehistoric interaction along the “inland” Bismarck Sea using network analysis. Unpublished manuscript, 2012 NEOMAP Project “Inland Seas in a Global Perspective,” Leiden, Netherlands.

Hope, G. S. and S. G. Haberle. 2005. The history of the human landscapes of New Guinea. In Papuan Pasts: cultural, linguistic, and biological histories of Papuan-speaking peoples, A. Pawley, R. Attenborough, J. Golson, and R. Hide, eds., pages 541–554. Canberra: Pacific Linguistics.

Irwin, G. J. 1992. The prehistoric exploration and colonisation of the Pacific. Cambridge: Cambridge University Press.

Specht, J., T. Denham, J. Goff, and J. E. Terrell. 2014. Deconstructing the Lapita cultural complex in the Bismarck Archipelago. Journal of Archaeological Research 22:89–140.

Summerhayes, G. R. 2009. Obsidian network patterns in Melanesia—sources, characterisation and distribution. IPPA Bulletin 29:109–124.

Terrell, J. E. 2004. The “sleeping giant” hypothesis and New Guinea’s place in the prehistory of Greater Near Oceania. World Archaeology 36:601–609.

Terrell, J. E. 2010a. Language and material culture on the Sepik coast of Papua New Guinea: using social network analysis to simulate, graph, identify, and analyze social and cultural boundaries between communities. The Journal of Island and Coastal Archaeology 5:3-32.

Terrell, J. E. 2010b. Social network analysis of the genetic structure of Pacific Islanders. Annals of Human Genetics 74:211–232.

Terrell, John Edward. n.d. Understanding Lapita as history. In The Oxford handbook of prehistoric Oceania, Ethan Cochrane and Terry Hunt, eds. Oxford: Oxford University Press.

Terrell. J. E. and E. M. Schechter. 2011.Archaeological investigations on the Sepik coast of Papua New GuineaFieldiana: Anthropology42:1–303.

Torrence, R. 2011. Finding the right question: learning from stone tools on the Willaumez Peninsula, Papua New Guinea. Archaeology in Oceania 46: 29-41.

Welsch, R. and J. E. Terrell. 1998. Material culture, social fields, and social boundaries on the Sepik coast of New Guinea. In The archaeology of social boundaries, Miriam Stark, ed., pages 50–77. Washington: Smithsonian Institution Press.

© 2014 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Human biogeography 1. Historical rivals

John Edward Terrell


Please note: this commentary, recovered on 15-Jan-2017, was originally published in Science Dialogues on 28-Jan-2015.


Abstract – Human biogeography is not a thriving scientific enterprise. Why? In part because our species is remarkably talented at niche construction and highly inventive at adapting our socially learned ways of making a living and staying alive to meet the challenges and opportunities around us wherever we find ourselves on the planet. Nonetheless there is political as well as scientific need in the 21st century for an inclusive biogeographical perspective on human diversity recognizing that we are a globally distributed species whose diversity is framed by isolation-by-distance constrained by our social, economic, and political networks, and whose impact on the environment and our own sustainability is substantial and critically in need of informed restructuring.

This is part 1 or a 3 part series at SCIENCE DIALOGUES


THERE OUGHT TO BE A NICHE in the economy of evolutionary biology for a research specialization called human biogeography, but use any search engine you favor and these two words as your key terms. You will find that while human geography has existed long enough to give rise to many sub-specializations (Castree 2009), human biogeography does not exist as a thriving scholarly enterprise, has given rise to no subfields, and is rarely noted as a possible contender for competitive research funding. Why? There are several reasons for this apparent truancy in the academic arena as well as an important lesson to be drawn for evolutionary biology.

Historical rivals

While the roots of modern species biogeography date back into the 18th century and before (Cox and Moore 2010), it has been conventional in Euro-American circles to treat human beings as apart from and even above the natural world (e.g., accounts of Creation in the Hebrew Bible and the Christian Old Testament). Perhaps for this reason, diverse research specializations such as ethnology, anthropology, archaeology, sociology, geography, physical anthropology, and the like took hold in the 19th century and early lay claim to much, if not all, of that century’s growing information about our own species diversity in its several dimensions—biological, cultural, social, ecological, economic, and linguistic (Stocking 1987). It seems possible—although perhaps difficult to prove—that seeing global human biodiversity as comparable in interesting ways to the diversity, relative abundance, and spatiotemporal distributions of other life forms has generally not been deemed appropriate or worthy. Alternatively, it might be argued that human biogeography was being practiced at least in the 19th century, but under the labeling physical geography, anthropogeography, or Erdkunde (Koelsch 2004). Whatever the explanation, other sciences have largely preempted the stage when the biogeography of human diversity is given serious attention.

Nature and nurture

Human biogeography has not been successful at establishing itself in the academic arena and marketplace in part also because it became increasingly apparent during the 19th century that our species is remarkably talented—to use today’s terminology—at environmental niche construction (Odling-Smee et al. 2003) as well as strikingly inventive at adapting our socially learned (i.e., “cultural”) ways of making a living and staying alive to meet the challenges as well as the prospective opportunities around us wherever we have found ourselves on the planet (Laland and O’Brien 2011). Hence centering research exclusively on the biological, epidemiological, and ecological side of being human might be asking us to overlook many and possibly most of the probable reasons accounting for our presence and impacts on local and regional environments as well as the global biosphere.

Folk human biogeography

Despite the growing sophistication during the 19th century of scientific ways of studying and interpreting human diversity in its many dimensions, older commonsensical ways of understanding our global variation as a species continued to hold sway in the public arena (Lewis 2008). Many of these old ideas survived the 20th century (Caspari 2003) and remain popular today. Two notions, in particular, are often voiced although there is by now more than sufficient evidence to the contrary. The first is the belief that we are an inherently tribal species. The second is the conviction that we are by nature untrustworthy, self-centered, and prone to violence.

The anthropologist Gustaf Retzius at work between circa 1870 and 1890. Source: http://commons.wikimedia.org/wiki/File:Antropologen_Gustaf_Retzius_i_f%C3%A4rd_med_att_m%C3%A4ta_h%C3%A4rjedalssamen_Fjellstedts_huvud_-_Nordiska_Museet_-_NMA.0052720.jpg PD-1923

For example, Nicholas Wade recently insisted that after we began leaving Africa around 50,000 years ago and started colonizing the rest of the world, we subsequently evolved in isolation on each of the earth’s major continents into biologically distinct races, which both popular wisdom and Wade say are three or so in number (Africans, Asians, and Caucasians) because “human evolution has been recent, copious and regional” and these dispersing human pioneers broke up into small tribal groups as they spread out across the globe. “The mixing of genes between these little populations was probably very limited. Even if geography had not been a formidable barrier, the hunter-gatherer groups were territorial and mostly hostile to strangers” (Wade 2014: 78).

Such interpretations may be appealing in their simplicity, but they are more in keeping with folk wisdom than with available research findings.

Acknowledgments

I thank Eric Clark, Mark Golitko, John Hart, and Kevin Kelly for comments on the working draft.

References      § = suggested further reading

Banks, W. E. (2013). Review of Harcourt, Human biogeography. Quarterly Review of Biology 88, 39–40.

Barth, F. (1969). Introduction. In Barth, F. (ed.) Ethnic groups and boundaries: The social organization of culture difference, pp 9–38. Boston, MA: Little, Brown and Company.

Bashkow, I. (2004). A neo-Boasian conception of cultural boundaries. American Anthropologist 106, 443–458.

Caspari, R. (2003). From types to populations: A century of race, physical anthropology, and the American Anthropological Association. American Anthropologist 105, 65–76.

Castree, N. (2009). Charles Darwin and the geographers. Environment and Planning A 41, 2293–2298. §

Cox, C. B. and Moore, P. D. (2010). Biogeography: An ecological and evolutionary approach. 8th ed. Hoboken, NJ: John Wiley & Sons.

Elhaik, E., Tatarinova, T., Chebotarev, D. et al. (2014). Geographic population structure analysis of worldwide human populations infers their biogeographical origins. Nature Communications DOI: 10.1038/ncomms4513.

Fuentes, A., Marks, J., Ingold, T. et al. (2010). On nature and the human. American Anthropologist 112, 512–521.

Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology 78, 1360–1380. §

Harcourt, A. H. (2012). Human biogeography. Berkeley: University of California Press. §

Hart, J. P. (2012). Why we are what and where we are. Science 338, 330.

Hellenthal, G., Busby, G. B. J., Band, G. et al. (2014). A genetic atlas of human admixture history. Science 343, 747–751.

Kelly, K. M.  (2002). Population. In Hart, J. P. & Terrell, J. E. (eds.) Darwin and archaeology: A handbook of key concepts, pp 243–256. Westport, Ct: Bergin & Garvey. §

Kivelä, M., Arnaud-Haond, S. and Saramäki, J. (2015).  EDENetworks: A user-friendly software to build and analyse networks in biogeography, ecology and population genetics. Molecular Ecology Resources 15, 117–122.

Koelsch, W. A. (2004). Franz Boas, geographer, and the problem of disciplinary identity. Journal of the History of the Behavioral Sciences 40, 1–22.

Kolata, G. B. (1974). Human biogeography: Similarities between man and beast. Science 185, 134–135.

Laland, K. N. and O’Brien, M. J. (2011). Cultural niche construction: An introduction. Biological Theory 6, 191–202.

Lao, O., Lu, T. T., Nothnagel, M. et al. (2008). Correlation between genetic and geographic structure in Europe. Current Biology 18, 1241–1248.

Lesser, A. (1961). Social fields and the evolution of society. Southwestern Journal of Anthropology 17, 40-48. §

Lewis, H. S. (2008). Franz Boas: Boon or bane? Reviews in Anthropology 37, 169–200.

Odling-Smee, F. J., Laland, K. N. and Feldman, M. W. (2003). Niche construction. Princeton: Princeton University Press.

Radil, S. M., Flint, C. and Tita, G. E. (2010). Spatializing social networks: Using social network analysis to investigate geographies of gang rivalry, territoriality, and violence in Los Angeles. Annals of the Association of American Geographers 100, 307–326. §

Simon, H. A. (1973). The organization of complex systems. In Pattee, H. H. (ed.) Hierarchy theory: The challenge of complex systems, pp 1–27. New York: George Braziller.

Stocking, G. W., Jr (1987). Victorian anthropology. New York: Free Press.

Terrell, J. E. (1977a). Biology, biogeography and man. World Archaeology 8, 237–248.

Terrell, J. E. (1977b). Geographic systems and human diversity in the North Solomons. World Archaeology 9, 62–81.

Terrell, J. E. (1977c). Human biogeography in the Solomon Islands. Fieldiana: Anthropology 68, 1–47.

Terrell J. E. (2006). Human biogeography: Evidence of our place in nature. Journal of Biogeography 33, 2088–2098. §

Terrell, J. E. (2010a). Language and material culture on the Sepik coast of Papua New Guinea: Using social network analysis to simulate, graph, identify, and analyze social and cultural boundaries between communities. Journal of Island and Coastal Archaeology 5, 3–32.

Terrell, J. E. (2010b). Social network analysis of the genetic structure of Pacific Islanders. Annals of Human Genetics 74, 211–232. §

Terrell, J. E. (2014). A talent for friendship: Rediscovery of a remarkable trait. Oxford: Oxford University Press. §

Verdon, M. (2006). The world upside down: Boas, history, evolutionism, and science. History and Anthropology 17, 171–187.

Verdon, M. (2007). Franz Boas: Cultural history for the present, or obsolete natural history? Journal of the Royal Anthropological Institute (N.S.) 13, 433–451.

Vincent, J. (2009). Ahead of his time? Production and reception in the work of Alexander Lesser. American Ethnologist 15, 743–751.

Wade, N. (2014). A troublesome inheritance: Genes, race and human history. New York: Penguin Press.

Watson, J. B. (1990). Other people do other things: Lamarckian identities in Kainantu subdistrict, Papua New Guinea. In Linnekin, J. & Poyer, L. (eds.) Cultural identity and ethnicity in the Pacific, pp 17–41. Honolulu: University of Hawai‘i Press.

Wilson, E. O. (1978). On human nature. Cambridge, MA: Harvard University Press.

Wilson, E. O. (2012). The social conquest of the earth. New York: Liveright (a division of W. W. Norton).

© 2015 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.