Reconfiguring biological diversity 1. Toxic and obsolete assumptions

John Edward Terrell

This is part 1 of a two part article

IN AN INSIGHTFUL REVIEW of Nicholas Wade’s recent book A Troublesome Inheritance: Genes, Race and Human History (Wade 2014), the anthropological geneticist Charles C. Roseman concluded that current scientific arguments against biological racism are weak and scattered. These failings—my word, not Roseman’s—are far more than just scientifically troubling. “To recuperate a useful scientific critique of race,” he argues, “we need to come to grips with ways in which the political processes of racism have shaped human organisms over the last few hundred years” (Roseman 2014).

As Roseman notes, nobody seriously contests that human variation “is structured in geographic space, through time, and across many social divisions.” What is still up for grabs is how to explain this observable diversity. And as Roseman emphasizes, how we explain human variation cannot ignore the divisive and often destructive power of racism as a potent driver of human evolution. “Without incorporating the effects of racism into models of human variation today, we will not be able to have a cohesive theory of genes and race, and the scientific critique of race will continue to have no teeth.”

While Roseman’s observations focus on human biological diversity, the weaknesses and uncertainties he has highlighted about our explanations for variation within our species apply also to modern science’s grasp of biological diversity more broadly speaking. From this more inclusive point of view, racism is just a particularly invidious human form of social behavior capable of patterning our genetic diversity in time and space. If so, what about other species? How does the patterning of their mobility and social behavior shape their genetic diversity?

“Populations,” “admixture,” and conventional wisdom

Although the human brain can be coaxed into paying close attention to detail and nuance,  as a thinking machine it generally favors expediency and the utility of knowledge over precision and accuracy.  It is not altogether surprising, therefore, that even scientists often still take it for granted that biological species are naturally subdivided into separate “populations” or “subspecies” that  may occasionally—say under changing demographic or environmental conditions—meet and mix, and thereby produce more or less isolated “admixed” new hybrids (e.g., Moore 1994; Hellenthal et al. 2014). The question being overlooked or at any rate downplayed is how real and persistent are these assumed “populations” (Terrell and Stewart 1996; Kelly 2002).

This question may sound academic, but it is not trivial, as Charles Roseman has underscored. When it comes to human beings, the favored word in scholarly circles may be the word population or perhaps deme, group, or community, but for the chap on the street, the more likely choice wouldn’t be one of these formal terms, but rather the more down-to-earth word race. (I still vividly remember being scolded by a famous biological anthropologist decades ago when I was an undergraduate for using this particular “r” word. “We don’t use that word anymore,” he told me. “We use the term stock  instead.”)

What’s at stake here

It has been a foregone assumption in most genetics research for years that different species are by definition and by their biology isolated reproductively from one another, i.e., individuals in different species cannot mate and give birth to viable offspring capable of sustaining life for longer than a single generation. However, even the most committed cladist accepts that biological relationships below the level of the species are tokogenetic, not phylogenetic (Posada and Crandall 2001; Rieppel 2009).

Figure 1. “Tokogeny versus phylogeny. (a) Processes occurring among sexual species (phylogenetic processes) are hierarchical. That is, an ancestral species gives rise to two descendant species. (b) Processes occurring within sexual species (tokogenetic processes) are nonhierarchical. That is, two parentals combine their genes to give rise to the offspring. (c) The split of two species defines a phylogenetic relationship among species (thick lines) but, at the same time, relationships among individuals within the ancestral species (species 1) and within the descendant species (species 2 and 3) are tokogenetic (arrows).” Source: Posada and Crandall 2001, fig. 1.

Here, therefore, is the conundrum. Call them what you want, populations within any given species are not inherently isolated reproductively either by definition and by their biology. Hence to treat populations as natural units, they must first be defined and demonstrated to be isolated and discernible as such in some other way, or ways. Can this be done?

Here is one favored way when the species in question is ourselves. Many people believe that the language you speak is a reliable sign or marker of your true ethnicity and even your race. Is this right?

Hardly. As both fable and risqué jokes alike would have it, any sailor arriving in a strange port of call is likely to discover soon enough that you don’t really need to speak the local language to enjoy a good time while ashore as long as you have a few coins in your pocket. Yet scholars have long written about people living in what some see as the “underdeveloped” regions of the world as being subdivided into recognizable ethnolinguistic groups, language communities, and the like despite the fact that such euphemisms for the old-fashioned word race pigeonhole rather than map the realities of their lives (Terrell 2010a).

But if neither biology nor language inherently—i.e., “naturally”—isolates and thereby subdivides human beings as a species into different populations, subpopulations, demes, communities, stocks, or races, is there anything that does? And what about other species on earth?

Competition and tribalism, or isolation-by-distance?

As Roseman has remarked: “All analyses of human variation make strong assumptions about the mode, tempo, and pattern whenever they interpret statistical results to make evolutionary conclusions” (Roseman 2016). Favored explanations for or against the assumption that our species can be subdivided into enduring natural populations largely fall into one or the other of two basic sorts.

On the one hand, there has long been anecdotal and scholarly evidence, too, that geography and topography can limit how well and how often people are able to stay in touch with one another socially and intellectually as well as sexually. As the authors of one recent study commented, research has shown that there is a strong positive correlation between global genetic diversity within our species and geographic distance. The correlations observed have often been interpreted “as being consistent with a model of isolation by distance in which there are no major geographic discontinuities in the pattern of neutral genetic variation” (Hunley et al. 2009).

As these same authors note, however, discordant gene frequency patterns are also common within our species. It is obvious, too, that physical and social impediments to gene flow have regularly produced both larger discontinuities as well as concordant allele frequency patterns than would be expected based solely on isolation-by-distance (clinal) models of variation (Ibid.).

Adding social impediments to the mix of possible explanations brings into play the second way many have tried to explain why people around the globe appear to be so diverse. While there are many variants of this alternative argument, the essential ingredients are the baseline assumptions that (a) competition between individuals and groups is the main driving force of evolution, (b) human beings are by nature selfish and aggressive creatures, and (c) until recently humans lived in small tribal groups that were not just suspicious of strangers and other communities near and far, but were frequently at war them them, too. All of these claims are not only questionable, but are arguably contrary to the fundamental evolved characteristics of our species (Terrell 2015).

Part 2: Coming to grips with diversity 


Ball, Mark C., Laura Finnegan, Micheline Manseau, and Paul Wilson. 2010. Integrating multiple analytical approaches to spatially delineate and characterize genetic population structure: An application to boreal caribou (Rangifer tarandus caribou) in central Canada. Conservation Genetics 11, 6: 2131-2143.

Dyer, Rodney J., and John D. Nason. 2004. Population graphs: The graph theoretic shape of genetic structure. Molecular ecology 13, 7: 1713-1727.

Fortuna, Miguel A., Rafael G. Albaladejo, Laura Fernández, Abelardo Aparicio, and Jordi Bascompte. 2009. Networks of spatial genetic variation across species. Proceedings of the National Academy of Sciences 106, 45: 19044-19049.

Friedlaender, Jonathan S., Françoise R. Friedlaender, Jason A. Hodgson, Matthew Stoltz, George Koki, Gisele Horvat, Sergey Zhadanov, Theodore G. Schurr, and D. Andrew Merriwether. 2007. Melanesian mtDNA complexityPLoS One 2, 2: e248.

Friedlaender, Jonathan S., Françoise R. Friedlaender, Floyd A. Reed, Kenneth K. Kidd, Judith R. Kidd, Geoffrey K. Chambers, Rodney A. Lea et al. 2008. The genetic structure of Pacific IslandersPLoS Genet 4, 1: e19.

Garroway, Colin J., Jeff Bowman, Denis Carr, and Paul J. Wilson. 2008. Applications of graph theory to landscape genetics. Evolutionary Applications 1, 4: 620-630.

Greenbaum, Gili, Alan R. Templeton, and Shirli Bar-David. 2016. Inference and analysis of population structure using genetic data and network theory. Genetics 202.4: 1299-1312.

Hellenthal, Garrett, George BJ Busby, Gavin Band, James F. Wilson, Cristian Capelli, Daniel Falush, and Simon Myers. 2014. A genetic atlas of human admixture history.” Science 343, 6172: 747-751.

Hunley, Keith, Michael Dunn, Eva Lindström, Ger Reesink, Angela Terrill, Meghan E. Healy, George Koki, Françoise R. Friedlaender, and Jonathan S. Friedlaender. 2008. Genetic and linguistic coevolution in Northern Island MelanesiaPLoS Genet 4, no. 10 (2008): e1000239.

Hunley, Keith L., Meghan E. Healy, and Jeffrey C. Long. 2009. The global pattern of gene identity variation reveals a history of long‐range migrations, bottlenecks, and local mate exchange: Implications for biological race. American Journal of Physical Anthropology 139, 1: 35-46.

Kelly, Kevin M.,  2002. Population. In Hart, J. P. & Terrell, J. E. (eds.) Darwin and Archaeology: A handbook of key concepts, pp 243–256. Westport, Ct: Bergin & Garvey.

Moore, John H. 1994. Putting anthropology back together again: The ethnogenetic critique of cladistic theory. American Anthropologist (1994): 925-948.

Posada, David, and Keith A. Crandall. 2001. Intraspecific gene genealogies: Trees grafting into networks. Trends in Ecology & Evolution 16, 1: 37-45.

Pritchard, Jonathan K., Matthew Stephens, and Peter Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155, 2: 945-959.

Rieppel, Olivier. 2009. Hennig’s enkaptic system. Cladistics 25, 3: 311-317.

Roseman, Chartes C. 2014. Troublesome Reflection: Racism as the Blind Spot in the Scientific Critique of Race” Human biology 86, 3: 233-240.

Roseman, Charles C. 2014. “Random genetic drift, natural selection, and noise in human cranial evolution. Human Biology 86, 3: 233-240.

Skoglund, Pontus, Cosimo Posth, Kendra Sirak, Matthew Spriggs, Frederique Valentin, Stuart Bedford, Geoffrey R. Clark et al. 2016. Genomic insights into the peopling of the Southwest Pacific. Nature 538: 510-513.

Terrell, John Edward. 2006. Human biogeography: Evidence of our place in nature. Journal of Biogeography 33, 12: 2088-2098.

Terrell, John Edward. 2010a. Language and material culture on the Sepik coast of Papua New Guinea: Using social network analysis to simulate, graph, identify, and analyze social and cultural boundaries between communities. Journal of Island & Coastal Archaeology 5, 1: 3-32.

Terrell, John Edward. 2010b. Social network analysis of the genetic structure of Pacific islanders. Annals of human genetics 74, 3: 211-232.

Terrell, John Edward. 2015. A Talent for Friendship: Rediscovery of a Remarkable Trait. Oxford University Press.

Terrell, John Edward, and Pamela J. Stewart. 1996. The paradox of human population genetics at the end of the twentieth century. Reviews in Anthropology 25, 1: 13-33.

Wade, Nicholas. 2014. A Troublesome Inheritance: Genes, Race and Human History. Penguin.

Wilson, David Sloan, and Edward O. Wilson. 2008. Evolution for the Good of the Group”: The process known as group selection was once accepted unthinkingly, then was widely discredited; it’s time for a more discriminating assessment. American Scientist 96, 5: 380-389.

Wright, Sewall. 1932. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proceedings of the Sixth International Congress of Genetics , Vol. 1: 356-366.

© 2017 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

One thought on “Reconfiguring biological diversity 1. Toxic and obsolete assumptions”

Leave a Reply