Thinking about thinking 4. Our social baseline

John Edward Terrell and Gabriel Stowe Terrell


Please note: this commentary, recovered on 9-Jan-2017, was originally published in Science Dialogues on 16-April-2015.


http://www.alice-in-wonderland.net/pictures/tweedledee-tweedledum-pictures.html

“The first thing in a visit is to say ‘How d’ye do?’ and shake hands!” And here the two brothers gave each other a hug, and then they held out the two hands that were free, to shake hands with her.

Alice did not like shaking hands with either of them first, for fear of hurting the other one’s feelings; so, as the best way out of the difficulty, she took hold of both hands at once . . .

Through the Looking-Glass by Lewis Carroll, 1871

AT THE HANDS OF SOMEONE like William Shakespeare or Virginia Woolf, humans may come off sounding complex, cantankerous, and downright mean at times, but often and also kind, noble, loving, and at least momentarily wise and intelligent. On the other hand, portrayals of our species in the reckonings of science are often far more one-sided and two-dimensional. Thus according to the zoologist Edward O. Wilson (2012) we are a tribal eusocial  species committed to killing outsiders for the good of our home group. The evolutionary psychologist Steven Pinker (2011a) maintains that we all have in effect if not in fact violent demons lurking within us that must be tamed by reason, compassion, and good governance. The social scientists Samuel Bowles and Herbert Gintis (2011) have expressed a more favorable view of human nature, but again like Wilson and Pinker, they have described our willingness to cooperate with one another as an evolutionary mystery in need of resolution given that humans are selfish at heart and can be self-serving in their motivations.

The most parsimonious proximal explanation of cooperation, one that is supported by extensive experimental and other evidence, is that people gain pleasure from or feel morally obligated to cooperate with like-minded people. People also enjoy punishing those who exploit the cooperation of others, or feel morally obligated to do so. (Bowles and Gintis 2011: 3)
Dubious assumptions

There are two major assumptions at the ground level of most current scientific analyses of human nature. The first is that selfishness is one of the prime movers of biological evolution. The second is the claim that human cooperation is based on reason, shame, and good gamesmanship. “The most important psychological contributor to the decline of violence over the long term may instead be reason: the cognitive faculties, honed by the exchange of ideas through language, that allow us to understand the world and negotiate social arrangements” (Pinker 2011b: 310). Both of these assumptions are questionable.

Neo-Darwinian determination

The fundamentals of evolutionary thinking as a way of explaining what we are seeing in the world of today and in the past have changed over time since Darwin’s day (Amundson 2014). Tom Clark has shown in his series of commentaries at SCIENCE DIALOGUES on Darwin’s use of “use and disuse” that during the latter half of the 20th century, the neo-Darwinian assumption that genes and environments were sufficient causes of observed behavior “turned natural selection from an animate doing into a physical happening. Attributing behavior to stable causes both inside (molecules) and outside (environment) turned animals into spectators, along for the ride.”

Clark underscores that how we tell our story of what it means to be human and how we have evolved to be the sort of animal we are directly leverages or constrains how well we handle our individual and collective impacts on the earth and our fellow human beings.

As Michael Ruse (2014) has observed, today natural selection is the mechanism seen by most experts on evolution as the chief reason  for organic change. It is perplexing, however, that when it comes to our species, attempts to explain our general willingness to cooperate with one another often take it as self-evident that selfishness, infra-specific competition, and gamesmanship (Potter 1947; Rand et al. 2013) rule the day even when we seem to be acting in kind, considerate, and evidently caring ways towards others (Terrell 2015: 111–117).

Such scientific cynicism may make perfect sense given the ruling assumptions of neo-Darwinian theory today, but the picture looks quite different if it isn’t accepted from the get-go that selfishness has to be a part of every permissible Darwinian explanation for life’s diversity and history on earth.

Social baseline theory

The psychologists Lane Beckes and his colleague James Coan are studying empathy and cooperation based on a radically different view of what it means to be human, a research tactic they call social baseline theory (Beckes and Coan 2011). Their working assumption is one that many would accept with little disagreement: being a social animal gives any species a genuine and practical advantage in the Darwinian struggle for survival and reproduction. And for humans at least, having the capacity to live and work closely with others also gives us a social baseline of emotional support and security. So much so, they say, that our social ties with other people are in effect an extension of the way the human brain interacts with the world. As a consequence, when we are around others we know and trust, we can let down our guard and relax.

From this perspective, the experienced payoffs are more than emotional. When we thus feel safe and secure, we are literally able to devote less energy—and we would add, less time—to staying alert for possible threats and uncertainties. Indeed, they have argued that the human brain has evolved to assume the presence of other people. In their words: “In our view, the human brain is designed to assume that it is embedded within a relatively predictable social network characterized by familiarity, joint attention, shared goals, and interdependence.”

On the other side of the mirror

Beckes and Coan have said a major saving grace of human sociality is the energetic cost benefit of not having to be the only one looking out for number one (Beckes and Coan 2011; Coan and  Maresh 2014; Coan and Sbarra 2015). While we would grant that there may be be such a cost benefit, we are uncertain how decisive this savings has been in shaping human evolution. After all, the probability of survival is determined not only by how much effort you have to put into the struggle. It can be argued that we are such strongly social animals for other reasons, too. First, we critically depend on social learning to know how to survive in the first place. Second, many of us—but admittedly not all—are predisposed socially and emotionally to be caregivers because our offspring wouldn’t survive the first years of their lives if we weren’t (Terrell 2015: 190–191).

To survive and reproduce, organisms must take in more energy than they expend, a principle of behavioral ecology called economy of action. Social baseline theory (SBT), a framework based on this principle, organizes decades of observed links between social relationships, health, and well-being, in order to understand how humans utilize each other as resources to optimize individual energy expenditures. (Coan and Maresh 2014: 221).

Furthermore, there is the matter of time. It may be true that time is money, but we humans are pretty good at wasting time for apparently no good reason, energetic or otherwise. And certainly there is no denying that when we feel safe and secure, many of us are willing to invest both time and energy in seemingly unproductive ways.

Consider, for example, the metabolic cost of the continuing mental activity in what has been dubbed the brain’s default mode network (DMN) when we are not task-engaged. The reward of not having to attend closely to the practicalities of the world around us when we feel safely embedded in nurturing social networks may be the excitement Alice must have felt in Lewis Carroll’s story after she had slipped through the looking-glass to explore the hidden wonders to be found therein (although judging by his singular account, Alice evidently did not find doing so as addictive as some today find the similar cognitive experience of playing online computer games). Just as those incarcerated in our penal system may be given time off for good behavior, so too, sharing the demands and burdens of life with others gives us time off to play with whatever takes our fancy on that landscape between our ears.

Previously in this series:
"Thinking about thinking 1. Cognitive niche construction"
"Thinking about thinking 2. Through the looking-glass"
"Thinking about thinking 3. Free will"
References

Amundson,  Ron (2014). Charles Darwin’s reputation: How it changed during the twentieth-century and how it may change again. Endeavour 38: 257–267.

Beckes, Lane and James A. Coan (2011).  Social baseline theory: The role of social proximity in emotion and economy of action.  Social and Personality Psychology Compass 5: 976–988.

Bowles, Samuel and Herbert Gintis (2011). A Cooperative Species: Human Reciprocity and Its Evolution. Princeton: Princeton University Press.

Coan, James A. and Erin L. Maresh (2014). Social baseline theory and the social regulation of emotion, pages 221–236. In J. Gross, ed., The Handbook of Emotion Regulation, 2nd. ed., pp. 221–236. New York: Guilford Press.

Coan, James A. and David A. Sbarra (2015). Social baseline theory: The social regulation of risk and effort. Current Opinion in Psychology   1: 87–91.

Pinker, Steven (2011a). The Better Angels of Our Nature: The Decline of Violence in History and its Causes. New York: Viking.

Pinker, Steven (2011b). Taming the devil within us. Nature  478: 309–311,

Potter, Stephen (1947). Theory and Practice of Gamesmanship. New York: Henry Holt & Company.

Rand, David G., Corina E. Tarnita, Hisashi Ohtsuki, and Martin A. Nowak (2013). Evolution of fairness in the one-shot anonymous Ultimatum Game.  Proceedings of the National Academy of Sciences U.S.A. 110:  2581–2586.

Ruse, Michael (2014). Was there a Darwinian revolution? Yes, no, and maybe! Endeavour 38: 159–168.

Terrell, John Edward (2015). A Talent for Friendship: Rediscovery of a Remarkable Trait. Oxford and New York: Oxford University Press.

Wilson, Edward O. (2012). The Social Conquest of the Earth. New York: Liveright (a division of W. W. Norton).


John Edward Terrell is Regenstein Curator of Pacific Anthropology at The Field Museum, Chicago, IL 60605. His latest book A Talent for Friendship: Rediscovery of a Remarkable Trait was published on December 1, 2014 by Oxford University Press. Email address: terrell[at]fieldmuseum.org

Gabriel Stowe Terrell is a freelance writer living in Madison, Wisconsin.

 

 

 

© 2015 John Edward Terrell and Gabriel Stowe Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Thinking about thinking 3. Free will

John Edward Terrell and Gabriel Stowe Terrell


Please note: this commentary, recovered on 9-Jan-2017, was originally published in Science Dialogues on 24-March-2015.


http://commons.wikimedia.org/wiki/File:Alice_par_John_Tenniel_16.png

THE BEHAVIORIST B. F. SKINNER was famously opposed to “mentalistic explanations” for human behavior. By this he meant attributing to the world of the mind an active “top-down” role (Baumeister and Miller 2014) in determining what we think, say, and do. In his eyes, trying to explain our overt behavior by appealing to inner states of mind, feelings, and other elements of an “autonomous man” inside our skulls was utterly foolish, unscientific, and a waste of time. “The ease with which mentalistic explanations can be invented on the spot is perhaps the best gauge of how little attention we should pay to them” (Skinner 1971: 160).

Instead, according to Skinner, the “task of a scientific analysis is to explain how the behavior of a person as a physical system is related to the conditions under which the human species evolved and the conditions under which the individual lives” (1971: 14). As distasteful as some might find such a realization, “the fact remains that it is the environment which acts upon the perceiving person, not the perceiving person who acts upon the environment” (1971: 188).

Even Skinner was willing to concede the “indisputable fact of privacy.” Nonetheless he stuck to his staunch environmentalism. “It is always the environment which builds the behavior with which problems are solved, even when the problems are to be found in the private world inside the skin” (1971: 194).

In a scathing review of Skinner’s 1971 book Beyond Freedom and Dignity, the linguist Noam Chomsky thoroughly rejected Skinner’s scientific claims. “His speculations are devoid of scientific content and do not even hint at general outlines of a possible science of human behavior. Furthermore, Skinner imposes certain arbitrary limitations on scientific research which virtually guarantee continued failure” (Chomsky 1971).

Unfortunately Chomsky’s spirited defense of human freedom and dignity against Skinner’s denial of both offered few concrete hints on why we are not the automatons Skinner said we are. But how are we not controlled by the world around us and by all that life deals us, both painful and pleasurable? How and how much does Skinner’s nemesis “autonomous man” have any real say in what we think, feel, and do? Chomsky left these critical issues unexplored and undocumented.

The mind-body problem

The philosopher Jerry Fodor noted in 1980 that traditional philosophies of mind can be divided into two sorts: dualist theories and materialist theories. “In the dualist approach the mind is a nonphysical substance. In materialist theories the mental is not distinct from the physical; indeed, all mental states, properties, processes and operations are in principle identical with physical states, properties, processes and operations” (Fodor 1980: 114). Since then cognitive psychologists and experts in neuroscience imaging have come down more or less firmly on the side of materialist theories, although exactly how the neurological hardware and software called the brain processes information and arrives at conclusions remains more an educated guess than a demonstrated reality.

Awkwardly what has traditionally been called the “mind-body problem” has often been seen in both science and philosophy as a conundrum about the consciousness of our thoughts and decisions. Yet as Max Velmans (2008) has observed, “it is now clear that ‘mind’ is not quite the same thing as ‘consciousness,’ and that the aspect of body most closely involved with consciousness is the brain. It is also clear that there is not one consciousness–brain problem, but many.” In other words, reading “mind and body” to mean “consciousness and brain tissue” is far too restrictive, too limiting.

Recently Ralph Adolphs (2015) at the California Institute of Technology surveyed what we do and don’t know about consciousness as a mental phenomenon and finds that there is little agreement about what it is and how it works. He helpfully divides the unsolved problems in neuroscience into four basic categories ranging from those that are now solved or will soon be to those that may never be decided. Discouragingly, he puts three key issues in the latter category. (1) How does the human brain compute? (2) How can cognition be so flexible and generative? (3) How and why does conscious experience arise?

His final conclusion is equally sobering. “In a nutshell, then, the biggest unsolved problem is how the brain generates the mind, conceived of in a way that does not simultaneously require answering the problem of consciousness.” However, on a more promising note, he adopts the framework proposed by David Marr (1982) to suggest that memory at least can be understood as the “ability to predict the future by learning.”

This comment is worth emphasizing. Unlike old Father William in Lewis Carroll’s famous poem who elected to stand on his head again and again after learning he had no brain, we see the design and decision-making that are both so fundamental to human niche construction as tangible proof that the human brain is capable of stimulus-independent, self-directed thought (Bonn 2013)—a roundabout way of saying that like Father William, the cognitive manipulations and innovations happening in our minds can lead to top-down, not just bottom-up causation (Foulkes and Domhoff 2014).

Evidence favoring this admittedly far from surprising conclusion can be seen readily enough in what happens on the landscape between our ears during that mysterious cognitive activity called dreaming.

Dreams and dreaming
Sir John Tenniel’s hand-colored proof of Cheshire Cat in the Tree Above Alice for The Nursery “Alice”, ca. 1889. http://commons.wikimedia.org/wiki/File:Tennel_Cheshire_proof.png

It is an enduring folk belief that we live our lives on-again off-again in dichotomous ways. We are either happy or sad, awake or asleep, conscious or unconscious, rational or emotional, and so on.

Cognitive psychology today, however, is discovering that a great deal that is happening in the brain instrumental to our survival, success, and emotional well-being is (1) largely disengaged from our conscious awareness of what’s going on both inside and outside us (e.g., Mudrik et al. 2014; Soto and Silvanto 2014), and is (2) more dependent on our feelings and emotions than conventionally seen (e.g., Inzlicht et al. 2015).

Dreaming, like consciousness, is one of those arenas of mental life about which much has been written and yet much remains to be understood (Domhoff and Fox 2015). Here we offer two observations. First, dreaming is more a top-down brain activity than generally envisioned (Foulkes and Domhoff 2014). Second, nobody who has ever recalled a dream needs to be told by anyone else that our brains are capable of creating often credible but truly off-the-wall situations, scenarios, and storied experiences that may not only have lingering emotional impact long after awakening, but can also be a source of great inspiration and creative insight. In short, cognitive niche construction does not need to be either conscious or wakeful.

Free will

Saying you know for sure what free will is or isn’t has long been a reliable way of provoking debate (Monroe et al. 2014). Nonetheless, here are three claims based on what we have been discussing thus far in this SCIENCE DIALOGUES series. First, human beings can think about things and actions—past, present, or future—without being aware that they are doing so (Bonn 2013). Second, human beings can act in accord with the worlds they construct for themselves in their Leslie minds. Third, free will does not have to be rational if by rational we mean “makes sense” in terms of the external world and the laws of physics, etc. Cognitive niche construction may begin with our own experiences of the world, but it does not have to end there. And as we shall discuss in later commentaries in this series, therein lies a problem.

Forthcoming in this series: "Thinking about thinking 4. Our social baseline."
Previously in this series: 
"Thinking about thinking 1. Cognitive niche construction"
"Thinking about thinking 2. Through the looking-glass"
References

Adolphs, Ralph (2015). The unsolved problems of neuroscience. Trends in Cognitive Science, in press.

Buschman, Timothy J. and Earl K. Miller (2014). Goal-direction and top-down control. Philosophical Transactions of the Royal Society B: Biological Sciences 369: 20130471 http://dx.doi.org/10.1098/rstb.2013.0471.

Bonn, Gregory B. (2013). Re-conceptualizing free will for the 21st century: Acting independently with a limited role for consciousness. Frontiers in Psychology 4: 920. doi: 10.3389/fpsyg.2013.00920

Chomsky, N. (1971). The case against B. F. Skinner. The New York Review of Books 17: 18-24.

Domhoff, G. William and Kieran C. R. Fox (2015). Dreaming and the default network: A review, synthesis, and counterintuitive research proposal. Consciousness and Cognition 33: 342–353.

Fodor, Jerry (1880). The mind-body problem. Scientific American244/1: 114–123.

Foulkes, David and G. William Domhoff (2014). Bottom-up or top-down in dream neuroscience? A top-down critique of two bottom-up studies. Consciousness and Cognition 27: 168–171.

Inzlicht, Michael, Bruce D. Bartholow, and Jacob B. Hirsh (2015). Emotional foundations of cognitive control. Trends in CognitiveScience 19: 126–132.

Marr, David (1982). 9 Marr, D. (1982) Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco: W. H. Freeman.

Monroe, A. E., Dillon, K. D., and Malle, B. F. (2104). Bringing free will down to earth: People’s psychological concept of free will and its role in moral judgment. Consciousness and Cognition 27: 100–108.

Mudrik, Liad, Nathan Faivre, and Christof Koch (2014). Information integration without awareness. Trends in Cognitive Sciences 18: 488–496.

Skinner, B. F. (1971). Beyond Freedom and Dignity. New York: Alfred A. Knopf, 1972.

Soto, David and Juha Silvanto (2014). Reappraising the relationship between working memory and conscious awareness. Trends in Cognitive Sciences 18: 520–525.

Velmans, Max (2008). How to separate conceptual issues from empirical ones in the study of consciousness. In R. Banerjee and B. K. Chakrabarti (eds.), Models of Brain and Mind: Physical, Computational and Psychological Approaches 168: 1–9.

Acknowledgements

We thank Tom Clark and Kevin Kelly for their comments and suggestions for improvement.

John Edward Terrell is Regenstein Curator of Pacific Anthropology at The Field Museum, Chicago, IL 60605. His latest book A Talent for Friendship: Rediscovery of a Remarkable Trait was published on December 1, 2014 by Oxford University Press. Email address: terrell[at]fieldmuseum.org

Gabriel Stowe Terrell is a free-lance writer living in Madison, Wisconsin.

 

 

 

© 2015 John Edward Terrell and Gabriel Stowe Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Thinking about thinking 2. Through the looking-glass

 John Edward Terrell and Gabriel Stowe Terrell

Please note: this commentary, recovered on 9-Jan-2017, was originally published in Science Dialogues on 5-March-2015.


Source: http://www.alice-in-wonderland.net/

“Oh, Kitty! how nice it would be if we could only get through into Looking-glass House! I’m sure it’s got, oh! such beautiful things in it! Let’s pretend there’s a way of getting through into it, somehow, Kitty. Let’s pretend the glass has got all soft like gauze, so that we can get through. Why, it’s turning into a sort of mist now, I declare! It’ll be easy enough to get through—” She was up on the chimney-piece while she said this, though she hardly knew how she had got there. And certainly the glass was beginning to melt away, just like a bright silvery mist.

Through the Looking-Glass by Lewis Carroll, 1871

 ALICE’S ADVENTURES IN WONDERLAND (first published in 1865) is Lewis Carroll’s most beloved book thanks in part to Walt Disney Studios and its 1951 cartoon version that  beautifully captured the logical nonsense of Carroll’s rich fantasy world of talking rabbits, smiling cats, and unlikely occurrences. The Disney cartoon, however, also incorporated a few of the characters and events from Carroll’s sequel Through the Looking-Glass and What Alice Found there (1871).

While both books exhibit his brilliance at cognitive niche construction, Carroll’s framing his second story around the otherworldly semblance of reality seen in a looking-glass may have been inspired by his own reflections on the elusiveness of human thought. He was a mathematician first and foremost. He knew well that however much our thoughts may mirror the world around us and what we experience from the cradle to the grave, each of us lives in a cognitive world populated by our own private thoughts on the “other side of the looking-glass”—a world that, unlike Alice, others cannot enter and explore.

The human conundrum

There is nothing surprising about saying we can draw a line between our public lives and our private thoughts. Look into the eyes of any dog. There is also nothing remarkable about saying  we are evidently not the only species capable of entertaining private thoughts and passions. As one of us has explored more fully elsewhere (Terrell 2015), our evolved human capacity to engage in cognitive niche construction—however remarkable or shared with at least some other species—brings with it costs as well as benefits. Socially we have evolved as a species to both want and need human contact and engagement. Yet during the evolution of our huge human brain we achieved a level of private cognition that enables us to disengage from the world around us. Hence as a species we are confronted with a conundrum.  We are social creatures with private thoughts “on the other side of the mirror” that can isolate us from others.

THE DYNAMIC INTERPLAY OF HUMAN EVOLUTION
Over the course of human evolution there has been a dynamic interplay between our mental & physical abilities, our brains, our social behavior, and our cleverness at niche construction that has also nurtured our skillfulness as a species at cognitive niche construction.
Lou, Laurence, and Leslie

Modeling how our minds work has taken many twists and turns over the course of human history. Some of the more extreme recent interpretations have insisted either that the brain is massively modular in its aptitudes (Steven Pinker and other evolutionary psychologists), or alternatively is passively shaped, or sculpted, by our interactions with the world around us (classical 20th century stimulus-response psychology).

At this stage in our investigations, we prefer to remain agnostic about how the brain’s circuitry gives us the capacity for thinking as seen in all its many dimensions, public and private (Adolphs 2015; Lamme 2006). In keeping with Daniel Kahneman’s (2011) wisdom to use such things as tools for thought rather than as literal descriptions of our cerebral hardware, we find it useful to characterize how we think about things and events in three different ways using the labels LouLaurence, and Leslie (for discussion, see: Terrell 2015: chapter 4):

  • Lou (also known as System 1 or Type 1)—thinking that is unconscious, automatic, quick, perhaps emotional, and easy to do; in short, information processing in the brain done mostly without conscious awareness; a type of thinking that may be evolutionarily old and is probably also within the mental capabilities of other animal species; the realm of our habitual selves.
  • Laurence (called System 2 or Type 2)—thinking that is conscious, slow, takes effort, and is purposeful; usually said to be involved in “higher-order” cognitive processes such as logical reasoning and decision-making; may or may not be unique to our species; the realm of intentional environmental niche construction.
  • Leslie—thinking that is contemplative, abstract, may be counterfactual, and is largely detached from an individual’s immediate realities; may or may not be unique to our species; the realm of cognitive niche construction
THE VISTA ON THE OTHER SIDE OF THE LOOKING-GLASS IN LEWIS CARROLL’S COGNITIVE WORLD WAS CURIOUSLY CARTESIAN! “For some minutes Alice stood without speaking, looking out in all directions over the country—and a most curious country it was. There were a number of tiny little brooks running straight across it from side to side, and the ground between was divided up into squares by a number of little green hedges, that reached from brook to brook.” http://upload.wikimedia.org/wikipedia/commons/a/a1/Curious_country.jpg
Self-generated thought

As Jessica Andrews-Hanna and her colleagues observed recently, understanding the mechanisms underlying self-generated thought and its adaptive and maladaptive functional outcomes has been a key aim of cognitive science in recent years (Andrews-Hanna et al. 2014: 29). In their estimation, far from being a passive brain phenomenon, for example, the default mode network (DMN) within our skulls contributes to several active forms of internally driven cognition. As she and her colleagues have written:

Tasks that activate the network often require participants to retrieve episodic, autobiographical, or semantic information, think about or plan aspects of their personal future, imagine  novel scenes, infer the mental states of other people, reason about moral dilemmas or other scenarios, comprehend narratives, self-reflect, reference information to one’s self, appraise or reappraise emotional information, and so on. (Andrews-Hanna et al. 2014: 32)

Although much remains to be learned about the costs and benefits of self-generated thought—which has also been dubbed stimulus-independent thought, spontaneous thought, internally-directed thought, and mind-wandering—it is becoming increasingly clear that the default and executive networks in the brain are not inherently working in opposition.

Kalina Christoff and her colleagues, as a case in point, have argued that both networks can work in parallel in ways that are reminiscent of the neural recruitment observed during creative thinking before solving problems with insight. Furthermore, “similar parallel recruitment of executive and default regions has also been observed during naturalistic film viewing, which is related to immersive simulative mental experience” (Christoff et al. 2009: 8723).

What we find both intriguing and frustrating  is that many researchers studying self-generated thought, with notable exceptions (Killingsworth and Gilbert 2010), seem committed to the view that internally-directed thought lies within the reach of human cognition because even when it appears to be getting us away from what we really ought to be doing to survive and make a living, mind-wandering may nonetheless “enable the parallel operation of diverse brain areas in the service of distal goals that extend beyond the current task” (Christoff et al. 2009: 8723).

Perhaps, but not necessarily so, as we shall discuss in the next commentary in this series.


Previously in this series: “Thinking about thinking 1: Cognitive niche construction”  Next in this series“Thinking about thinking 3. Free will”


References

Adolphs, Ralph (2015). The unsolved problems of neuroscience. Trends in Cognitive Sciences, in press.  http://dx.doi.org/10.1016/j.tics.2015.01.007

Andrews‐Hanna, Jessica R., Jonathan Smallwood, and R. Nathan Spreng (2014). The default network and self‐generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences 1316: 29–52.

Christoff, Kalina, Alan M. Gordon, Jonathan Smallwood, Rachelle Smith, and Jonathan W. Schooler (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc. Natl. Acad. Sci. U.S.A. 106: 8719–8724.

Kahneman, Daniel (2011). Thinking: Fast and Slow. New York: Farrar, Straus and Giroux.

Killingsworth, Matthew A., and Daniel T. Gilbert (2010). A wandering mind Is an unhappy mind. Science 330: 932.

Lamme, Victor A. F. (2006). Towards a true neural stance on
consciousness. Trends in Cognitive Sciences 10: 494–501.

Terrell, John Edward (2015). A Talent for Friendship: Rediscovery of a Remarkable Trait. Oxford and New York: Oxford University Press.


John Edward Terrell is Regenstein Curator of Pacific Anthropology at The Field Museum, Chicago, IL 60605. His latest book A Talent for Friendship: Rediscovery of a Remarkable Trait was published on December 1, 2014 by Oxford University Press. Email address: terrell[at]fieldmuseum.org

Gabriel Stowe Terrell is a freelance writer living in Madison, Wisconsin.

 

 

 

© 2015 John Edward Terrell and Gabriel Stowe Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Thinking about thinking 1. Cognitive niche construction

John Edward Terrell 

Please note: this commentary, recovered on 9-Jan-2017, was originally published in Science Dialogues on 22-Jan-2015.


“Can we state more distinctly still the manner in which the mental life seems to intervene between impressions made from without upon the body, and reactions of the body upon the outer world again?”

William James, The Principles of Psychology, 1890: 6

By Dmitry Rozhkov (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
THE NEUROLOGIST MARCUS RAICHLE HAS remarked that studies of brain function have traditionally focused on task-evoked responses (Raichle 2010, 2015). As Daniel Kahneman has explained, such research has contributed the useful convention that there are two modes of thinking—two systems in the mind, System 1 (or Type 1) and System 2 (or Type 2). In Kahneman’s words (2011: 20–21):

System 1 operates automatically and quickly, with little or no effort and no sense of voluntary control.

System 2 allocates attention in the effortful mental activities that demand it, including complex computations. The operations of System 2 are often associated with the subjective experience of agency, choice, and concentration.

Although such conventions are useful, Raichle argues that focusing on task-evoked responses “ignores the alternative possibility that brain functions are mainly intrinsic, involving information processing for interpreting, responding to and predicting environmental demands” (2010: 180).

As he says, it is not difficult to see why so much attention has been given to monitoring neural responses to carefully designed tasks that can be rigorously controlled: “evaluating the behavioral relevance of intrinsic activity (i.e. ongoing neural and metabolic activity which is not directly associated with subjects’ performance of a task) can be an elusive enterprise” (2010: 180).

While it could be argued that intrinsic brain tasks are part and parcel of System 2 thinking, I believe it may be more constructive to infer instead that there is a third mode of thinking—one that I have suggested may be called cognitive niche construction (Terrell 2015: 29–32, 168–172)—a way of thinking that may strongly engage the brain’s default-mode network.

Default-mode network

As Raichle (2015) and Robert Spunt and his colleagues (in press) have underscored, there is considerable metabolic cost to running the human brain when it is engaged in ongoing internal activity. As the latter researchers observe: “most of the brain’s energy budget is consumed not by activity evoked by specific cognitive tasks (e.g., mental arithmetic) but by spontaneous ongoing activity that is most notable when the brain is at rest.”

Given the metabolic cost of this ongoing internal activity in what has been dubbed the brain’s default mode network (DMN) when we are not task-engaged, an obvious question arises. How can we afford such stimulus-independent activity?

Raiche, Spunt et al., and others stress the likelihood that such inner-directed brain activity must be somehow adaptive in a realistic Darwinian sense, i.e., this inner activity must be “functionally consequential for the execution of stimulus-dependent mental state inferences” (Spunt et al. in press). This inference is plausible, but arguably not sufficient.

Niche construction

How we are able to remake the world around us when we put our minds and backs to the effort has been called niche construction (Odling-Smee et al. 2003). In the biological sciences, the word “niche” means “way of life,” and every species is said to have its particular place, or niche, in the economy of life. We are just one of a number of species that excel at making and remaking their way of life, their place in the grand scheme of things, their ecological niche. Similarly, I have argued that even when it may look as if we are day-dreaming, our minds actually may be hard at work engaged in cognitive niche construction—a way of using our brains that is possibly but not necessarily unique to our species (Terrell 2015).

Others recently have also written about cognitive niche construction, but what they evidently have in mind may be more clearly activity under the heading of System 2 thinking. Steven Pinker, for instance, has defined cognitive niche construction as “a mode of survival characterized by manipulating the environment through causal reasoning and social cooperation” (Pinker 2010: 8993).

Such a description glosses over how difficult it can be to apply what we envision in our mind’s eye to the realities of life. More to the point, such a definition does not confront the obvious weakness of cognitive niche construction at least as I have described it. What goes on between our ears when we are engaged in such mental activity does not have to be rational at all, at least not if by “rational” we mean thinking that makes practical sense in the real world outside our bodies.

A Paradox

By detaching from the realities of the moment and turning our mind to our inner thoughts, we are able to ponder what I like to call the “coulds & shoulds” of life. We can devote our mind to a kind of imaginary niche construction that does not even have to be “of this world” at all. We can see seemingly impossible things in our mind’s eye. We can engage in “what if” fantasies of remarkable, perhaps sexually charged, and even quite unrealistic complexity. We can invent imaginary worlds, invent new things, rewrite the story of our life to our heart’s content. All in the mind rather than in the real world.

In short, it seems likely we engage in cognitive niche construction not just for interpreting, responding to, and predicting environmental demands—to paraphrase what Raichle has previously said. As Spunt et al. observe: “Given that the DMN activity is metabolically costly, widely distributed in the cortex, and highly sensitive to both the presence and type of task demand, it should be no surprise that this network would have functional consequences in multiple domains” (Spunt et al., in press).

They themselves hypothesize that natural selection has favored the evolution of such a costly DMN in humans (and possibly also in chimpanzees and monkeys) so that we can more skillfully “see the world in terms of other minds” and live together socially—thereby gaining far more socially than would be likely by living separately.

While this is a plausible hypothesis, it is not the only one possible, as Gabriel Terrell and I will discuss in the forthcoming commentaries.


Editor’s note: This is the first in a series of eight commentaries at SCIENCE DIALOGUES on cognitive niche construction and its implications for psychology, philosophy, and the social sciences generally.

Next in this series: “Thinking about thinking 2. Through the looking-glass.”


References

Kahneman, Daniel (2011). Thinking: Fast and Slow. New York: Farrar, Straus and Giroux.

Odling-Smee, F. John, Kevin N. Laland, and Marcus W. Feldman (2003). Niche Construction. Princeton: Princeton University Press.

Pinker, Steven (2010). The cognitive niche: Coevolution of intelligence, sociality, and language. Proceedings of the National Academy USA 107, suppl. 2: 8993–8999.

Raichle, Marcus (2010). Two views of brain function. Trends in Cognitive Sciences 14: 180–190.

Raichle, Marcus (2015). The restless brain: How intrinsic activity organizes brain function. Philosophical Transactions of the Royal Society B 370: 20140172. http://dx.doi.org/10.1098/rstb.2014.0172

Spunt, Robert P., Meghan L. Meyer, and Matthew D. Lieberman (in press). The default mode of human brain function primes the intentional stance. Journal of Cognitive Neuroscience.

Terrell, John Edward (2015). A Talent for Friendship: Rediscovery of a Remarkable Trait. Oxford and New York: Oxford University Press.


John Edward Terrell is Regenstein Curator of Pacific Anthropology at The Field Museum, Chicago, IL 60605. His latest book A Talent for Friendship: Rediscovery of a Remarkable Trait was published on December 1, 2014 by Oxford University Press. Email address: terrell[at]fieldmuseum.org

© 2015 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Human biogeography 3. Defining the agenda

John Edward Terrell


Please note: this commentary, recovered on 15-Jan-2017, was originally published in Science Dialogues on 12-Feb-2015.


Abstract – Human biogeography is not a thriving scientific enterprise. Why? In part because our species is remarkably talented at niche construction and highly inventive at adapting our socially learned ways of making a living and staying alive to meet the challenges and opportunities around us wherever we find ourselves on the planet. Nonetheless there is political as well as scientific need in the 21st century for an inclusive biogeographical perspective on human diversity recognizing that we are a globally distributed species whose diversity is framed by isolation-by-distance constrained by our social, economic, and political networks, and whose impact on the environment and our own sustainability is substantial and critically in need of informed restructuring.

This is part 3 of a 3 part series at SCIENCE DIALOGUES


POSSIBLY THE FIRST ATTEMPT IN RECENT YEARS to put humans on the agenda of biogeography was in 1974 at a small invitational conference in Washington, D.C. with this goal supported by the Wenner-Gren Foundation for Anthropological Research and organized by William Fitzhugh at the Smithsonian Institution and John Terrell at Field Museum of Natural History in Chicago (Kolata 1974). Human biogeography was provisionally defined by the organizers as “the study of the size, distribution, and population structure of, and the interactions among, human populations found in similar or divergent habitats, and of the conditions and events leading to the development and maintenance of similarities and differences among human populations living at various points on the earth’s surface” (Terrell 1977c: 5).

In 2012 the University of California Press published the first modern textbook in English on how and why we are distributed as we are globally, Alexander Harcourt’s Human biogeography (2012). As one reviewer noted about this book: “to study such patterns effectively one must not only work with an immense body of data, but also effectively employ theories and methods from both anthropology and biogeography” (Banks 2013: 39). Further, much of human diversity, as Harcourt emphasizes, is not about genes determining human behavior or even influencing what we do, but rather about our socially mediated interactions with the world (Hart 2012: 330).

Units of analysis

The biologist Richard Levins, one of the attendees at the Washington conference in 1974, pointed out that comparing the geographical distribution, variation, and demographic characteristics of human beings with these dimensions in other species is problematic. Biogeographers commonly then and now use taxonomic species as their units of analysis since (by definition, at least) species cannot interbreed. But what characteristics should be used to delimit appropriate human units for comparison given that all of us can at least potentially interbreed even if circumstance, preference, or spatial remove may keep Homo sapiens from being a panmictic species (Caspari 2003)?

When the science writer Gina Kolata reported in Science in 1974 on this conference, she noted that selecting the appropriate human units might be contingent on the research question being asked. If so, then defining the units might be done, for instance, by parsing linguistic, genetic, or cultural traits as the salient diagnostic characters (Kolata 1974). However, the crux of the issue raised by Levins and others at the conference remains. When it comes to variation within our species are the units however defined biologically meaningful? For example, are human groups defined linguistically (i.e., as ethnolinguistic populations) also biologically discernible, informative, and more than ephemeral (Kelly 2002)?

The answer is probably negative. The partitioning of people by language, for instance, is perhaps more extreme in the New Guinea region of the southwestern Pacific than anywhere else on earth. Although it has long been conventional to say that linguistic differences can be used to map biologically persistent populations, research on both cultural and genetic similarities and differences among communities in this part of the world has shown that their diversity when mapped geographically is structured most clearly not by language but rather by isolation-by-distance constrained by social networks and local environmental conditions such as ground slope and topographic ruggedness (Terrell 2010a, 2010b).

Systematic human biogeography

Although, as Barth remarked, it has long been conventional to talk about diversity within our species by presupposing there are discrete aggregations of people on earth that can be labeled as human populations, ethnic groups, and the like, it is probable that many of those attending the 1974 conference were fully aware of the challenges of defining units of analysis in the human sciences. They were not merely trying to map these sciences into the research agenda of species biogeography as then understood and practiced in the biological sciences. Yet it is also true, as John Terrell noted in the introduction to the resulting conference volume, that our human environment is not just a social construct: “People are [also] elements in a far more complex system, at best only partly of man’s design . . . within which a change in anyone element or relationship is likely to effect changes, of a greater or lesser degree, in all the others” (Terrell 1977a: 245).

Although the phrase has won few converts, Terrell suggested at the conference that such networks of interactions might be called geographic systems:

a geographic system is the interactive configuration among the size, distribution and interaction structure of a set of local populations and the elements and interaction structure of the area of their occurrence, analysed as a complex of intercommunicating variables within which a change in any one variable or relationship is likely to effect changes, of a greater or lesser degree, in all the others. (Terrell 1977b: 65)

Key here is the qualification “a greater or lesser degree.” As Herbert Simon once remarked: “To a Platonic mind, everything in the world is connected with everything else—and perhaps it is. Everything is connected, but some things are more connected than others” (Simon 1973: 23). What Simon had in mind were complex hierarchical systems: a broad class (physical, chemical, biological, social, or artificial) exhibiting what he termed “loose horizontal coupling” permitting “each subassembly to operate dynamically in independence of the detail of the others; only the inputs it requires and the outputs it produces are relevant for the larger aspects of system behavior” (1973: 16).

Networks human biogeography

Folk human biogeography presupposes that groups of some kind exist (perhaps simply because people say they exist), and similarities among such corporate players on the world stage of history can be attributed to common ancestry, adaptive convergence, or diffusion (which in the biological sciences is often called admixture) across the boundaries that supposedly exist between such corporate entities (Bashkow 2004). Systematic human biogeography interpreted the way Simon has described complex systems similarly also would appear to take for granted the presence of subsystems needing to communicate with one another but only in so far as inputs and outputs are relevant to the behavior and survival of the system as a whole. Yet harkening back to Levins’ concern in 1974: how should we define boundaries and systems in human biogeography?

Proximal-point analysis of the Solomon Islands and neighboring islands to the northwest (John Terrell, Smithsonian Conference, 1974).

Although not given much attention at the conference in 1974, an alternative strategy using graph theory was showcased during one of the presentations then (Terrell 1977c), and it is now widely recognized that Simon’s way of thinking about systemic relationships is not the only way to think about the dynamics of loosely-coupled systems. In 1973, for example, Mark Granovetter (1973) used graph theory—now more generally known as network analysis—to examine how the strength of our ties with others can determine our social mobility, the diffusion of ideas, the political and economic organization of society, and on a more general level, the cohesion of society writ large.

Network analysis enables us see the world around us as one of connections that shape observed phenomena, rather than as one where the intrinsic properties of predefined entities—groups, populations, tribes, systems, and the like—determine the behavior and outcomes of human interactions. Today network analysis in biogeography holds promise, but is still far from conventional (e.g., Kivelä et al. 2015; Radil et al. 2010; Terrell 2010b).

Conclusion

As Shakespeare asked, what’s in a name? It could be argued that anthropology, ethnology, or Erdkunde in the 19th century was simply another name for what would now be called biogeography focused narrowly on one species, namely us (Terrell 2006). This synonymy would be harder to assert for anthropology, human geography, and biogeography in the 20th century in part because the renowned anthropologist Franz Boas and his many prominent students in North America were generally successful at least within the academy at promoting the view that culture (i.e., social learning) is the cardinal trait uniquely defining us as a species (Lewis 2008)—although this historical claim can be contested (Koelsch 2003; Verdon 2006, 2007). What about the 21st century? Is there gain or advantage to be had today by still seeking to unite at least some of the elements of these realms of study under the neglected heading human biogeography?

Martinus Beijerinck in his laboratory, 12 May 1921. Source: http://commons.wikimedia.org/wiki/File:Mwb_in_lab.JPG. US.PD. “Beijerinck was a socially eccentric figure. He was verbally abusive to students, never married, and had few professional collaborations. He was also known for his ascetic lifestyle and his view of science and marriage being incompatible. His low popularity with his students periodically depressed him, as he very much loved spreading his enthusiasm for biology in the classroom.” http://en.wikipedia.org/wiki/Martinus_Beijerinck.

There is at least one practical reason to do so. While it might seem contentious, it could be said that science as a human activity is more tribal than our species itself. From a social scientist’s point of view—given that we do not naturally come in kinds—it seems astonishing that some geneticists today, for instance, would accept the old folk belief that human groups—geneticists call them populations—are so biologically isolated, and interactions, biological or otherwise, among people living in different places on earth are so rare, that it is proper to assume our biological similarities from place to place must be due to “sudden or gradual transfers of genetic material, creating admixed populations” (Hellenthal et al. 2014: 747; also Elhaik et al. 2014). Perhaps if there were a discipline called human biogeography, it would be more difficult for biologists to overlook what social scientists can tell them about our species, and vice versa.

Acknowledgments

I thank Eric Clark, Mark Golitko, John Hart, and Kevin Kelly for comments on the working draft.

References      § = suggested further reading

Banks, W. E. (2013). Review of Harcourt, Human biogeography. Quarterly Review of Biology 88, 39–40.

Barth, F. (1969). Introduction. In Barth, F. (ed.) Ethnic groups and boundaries: The social organization of culture difference, pp 9–38. Boston, MA: Little, Brown and Company.

Bashkow, I. (2004). A neo-Boasian conception of cultural boundaries. American Anthropologist 106, 443–458.

Caspari, R. (2003). From types to populations: A century of race, physical anthropology, and the American Anthropological Association. American Anthropologist 105, 65–76.

Castree, N. (2009). Charles Darwin and the geographers. Environment and Planning A 41, 2293–2298. §

Cox, C. B. and Moore, P. D. (2010). Biogeography: An ecological and evolutionary approach. 8th ed. Hoboken, NJ: John Wiley & Sons.

Elhaik, E., Tatarinova, T., Chebotarev, D. et al. (2014). Geographic population structure analysis of worldwide human populations infers their biogeographical origins. Nature Communications DOI: 10.1038/ncomms4513.

Fuentes, A., Marks, J., Ingold, T. et al. (2010). On nature and the human. American Anthropologist 112, 512–521.

Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology 78, 1360–1380. §

Harcourt, A. H. (2012). Human biogeography. Berkeley: University of California Press. §

Hart, J. P. (2012). Why we are what and where we are. Science 338, 330.

Hellenthal, G., Busby, G. B. J., Band, G. et al. (2014). A genetic atlas of human admixture history. Science 343, 747–751.

Kelly, K. M.  (2002). Population. In Hart, J. P. & Terrell, J. E. (eds.) Darwin and archaeology: A handbook of key concepts, pp 243–256. Westport, Ct: Bergin & Garvey. §

Kivelä, M., Arnaud-Haond, S. and Saramäki, J. (2015).  EDENetworks: A user-friendly software to build and analyse networks in biogeography, ecology and population genetics. Molecular Ecology Resources 15, 117–122.

Koelsch, W. A. (2004). Franz Boas, geographer, and the problem of disciplinary identity. Journal of the History of the Behavioral Sciences 40, 1–22.

Kolata, G. B. (1974). Human biogeography: Similarities between man and beast. Science 185, 134–135.

Laland, K. N. and O’Brien, M. J. (2011). Cultural niche construction: An introduction. Biological Theory 6, 191–202.

Lao, O., Lu, T. T., Nothnagel, M. et al. (2008). Correlation between genetic and geographic structure in Europe. Current Biology 18, 1241–1248.

Lesser, A. (1961). Social fields and the evolution of society. Southwestern Journal of Anthropology 17, 40-48. §

Lewis, H. S. (2008). Franz Boas: Boon or bane? Reviews in Anthropology 37, 169–200.

Odling-Smee, F. J., Laland, K. N. and Feldman, M. W. (2003). Niche construction. Princeton: Princeton University Press.

Radil, S. M., Flint, C. and Tita, G. E. (2010). Spatializing social networks: Using social network analysis to investigate geographies of gang rivalry, territoriality, and violence in Los Angeles. Annals of the Association of American Geographers 100, 307–326. §

Simon, H. A. (1973). The organization of complex systems. In Pattee, H. H. (ed.) Hierarchy theory: The challenge of complex systems, pp 1–27. New York: George Braziller.

Stocking, G. W., Jr (1987). Victorian anthropology. New York: Free Press.

Terrell, J. E. (1977a). Biology, biogeography and man. World Archaeology 8, 237–248.

Terrell, J. E. (1977b). Geographic systems and human diversity in the North Solomons. World Archaeology 9, 62–81.

Terrell, J. E. (1977c). Human biogeography in the Solomon Islands. Fieldiana: Anthropology 68, 1–47.

Terrell J. E. (2006). Human biogeography: Evidence of our place in nature. Journal of Biogeography 33, 2088–2098. §

Terrell, J. E. (2010a). Language and material culture on the Sepik coast of Papua New Guinea: Using social network analysis to simulate, graph, identify, and analyze social and cultural boundaries between communities. Journal of Island and Coastal Archaeology 5, 3–32.

Terrell, J. E. (2010b). Social network analysis of the genetic structure of Pacific Islanders. Annals of Human Genetics 74, 211–232. §

Terrell, J. E. (2014). A talent for friendship: Rediscovery of a remarkable trait. Oxford: Oxford University Press. §

Verdon, M. (2006). The world upside down: Boas, history, evolutionism, and science. History and Anthropology 17, 171–187.

Verdon, M. (2007). Franz Boas: Cultural history for the present, or obsolete natural history? Journal of the Royal Anthropological Institute (N.S.) 13, 433–451.

Vincent, J. (2009). Ahead of his time? Production and reception in the work of Alexander Lesser. American Ethnologist 15, 743–751.

Wade, N. (2014). A troublesome inheritance: Genes, race and human history. New York: Penguin Press.

Watson, J. B. (1990). Other people do other things: Lamarckian identities in Kainantu subdistrict, Papua New Guinea. In Linnekin, J. & Poyer, L. (eds.) Cultural identity and ethnicity in the Pacific, pp 17–41. Honolulu: University of Hawai‘i Press.

Wilson, E. O. (1978). On human nature. Cambridge, MA: Harvard University Press.

Wilson, E. O. (2012). The social conquest of the earth. New York: Liveright (a division of W. W. Norton).

© 2015 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Human biogeography 2. Human diversity

John Edward Terrell


Please note: this commentary, recovered on 15-Jan-2017, was originally published in Science Dialogues on 5-Feb-2015.


Abstract – Human biogeography is not a thriving scientific enterprise. Why? In part because our species is remarkably talented at niche construction and highly inventive at adapting our socially learned ways of making a living and staying alive to meet the challenges and opportunities around us wherever we find ourselves on the planet. Nonetheless there is political as well as scientific need in the 21st century for an inclusive biogeographical perspective on human diversity recognizing that we are a globally distributed species whose diversity is framed by isolation-by-distance constrained by our social, economic, and political networks, and whose impact on the environment and our own sustainability is substantial and critically in need of informed restructuring.

This is part 2 of a 3 part series at SCIENCE DIALOGUES.


GENETIC EVIDENCE BOTH MOLECULAR AND METRIC now supports instead two robust observations about the biogeography of our species. First, our global physical diversity is structured not by geographic isolation, but instead by isolation-by-distance constrained by social, economic, and political networks (e.g., Lao et al. 2008; see also below) and the specifics of local geography. Said less awkwardly, people as a rule are similar to those nearby and differ from those living farther away. Second, we are proficient at crossing the lines we draw between ourselves and others. Social, cultural, economic, and political barriers are only as real as we want to make them, and social realities are in constant flux and renegotiation (Bashkow 2004).

To infer, as Nicholas Wade and others have done, that we have normally lived in isolated tribal groups until quite recently—say, before globalization—resurrects what the anthropologist Alexander Lesser once dubbed the myth of the primitive isolate—the belief that there were savage tribes before and after 1492 that were circumscribed, timeless societies having few and mostly hostile dealings with one another (Lesser 1961; Lewis 2008; Vincent 2009).

Ethnic stereotypes

Fredrik Barth has remarked that practically all social science reasoning rests on the notion that there are discrete groups of people on earth that can be variously labeled as populations, ethnic groups, societies, cultures, or races (Barth 1969). This way of charting our diversity—commonly called typological or categorical thinking—takes it as self-evident that things naturally come in different kinds, or types, that may legitimately be labeled as such. From this perspective, the words we use to describe things are like empty containers into which we can put things once we have grasped the essential meaning of these verbal containers.

Bild aus Seite 541 in “Die Gartenlaube.” Image from page 541 of journal Die Gartenlaube, 1887. Source: http://commons.wikimedia.org/wiki/File:Die_Gartenlaube_(1887)_b_541_2.jpg

From this perspective, it would seem self-evident that different kinds of people live in different parts of the world. After all, who could possibly mistake an African for an Asian or someone of Irish descent? Nor is this just a Euro-American way of parsing real or assumed geographic variation within our species. The anthropologist James Watson reported half a century ago, for example, that people he knew well in the Eastern Highlands of New Guinea had no difficulty pointing out to him how they saw themselves as different from other people in neighboring places despite the fact that these many small communities were intermittently marked by relocations, realignments, and the patriation of immigrants who had been expelled by hostile neighbors from their own lands—so much so, Watson related, that “to the literal-minded genealogist, the long-term kinship and continuity of each such group seem confused, even compromised” (Watson 1990: 17). Yet despite the demographic instability of these communities, he found that people there were generally quite confident they could draw lines between themselves and others for “no matter how permeable their boundaries or how checkered the history of their membership, they will consider themselves and will be thought to be distinct ethnic units” (Watson 1990: 18).

Group selectionism

The belief that people come in recognizable different types, kinds, or races is often paired with the notion that we are inherently selfish, intolerant, and aggressive—in a word, that we are all bullies at birth needing years of nurturance to become kind and socially adept humans. In this vein, the biogeographer Edward O. Wilson has written that when asked if humans are innately aggressive, he replies: “This is a favorite question of college seminars and cocktail party conversations,” he writes, “and one that raises emotion in political ideologues of all stripes. The answer to it is yes.” (Wilson 1978: 99).

The Emin Pasha Relief Expedition under attack from an African natives. Source: https://commons.wikimedia.org/wiki/File:The_Emin_Pasha_Relief_Expedition_under_attack_Wellcome_L0034831.jpg

Recently Wilson underscored one of the major assertions behind this way of thinking about ourselves: that competition among groups rather than cooperation has been a powerful driving force behind the evolution of our species and our behavior as individuals. As Wilson has recently phrased the thought: “Our bloody nature, it can now be argued in the context of modern biology, is ingrained because group-versus-group was a principal driving force that made us what we are. . . . Each tribe knew with justification that if it was not armed and ready, its very existence was imperiled” (Wilson 2012: 62).

This is not the place to argue against such understandings of what it means to be human (Terrell 2014). Briefly put, as Robert Sussman has written: “To say that humans have a propensity for violence says nothing. We also have a propensity for nonviolence. In fact, the norm, or statistically more common behavior, within human groups is cooperation and among human groups is peace. Violence, both within and among societies, is statistically abnormal” (Sussman in: Fuentes et al. 2010).

Acknowledgments

I thank Eric Clark, Mark Golitko, John Hart, and Kevin Kelly for comments on the working draft.

References      § = suggested further reading

Banks, W. E. (2013). Review of Harcourt, Human biogeography. Quarterly Review of Biology 88, 39–40.

Barth, F. (1969). Introduction. In Barth, F. (ed.) Ethnic groups and boundaries: The social organization of culture difference, pp 9–38. Boston, MA: Little, Brown and Company.

Bashkow, I. (2004). A neo-Boasian conception of cultural boundaries. American Anthropologist 106, 443–458.

Caspari, R. (2003). From types to populations: A century of race, physical anthropology, and the American Anthropological Association. American Anthropologist 105, 65–76.

Castree, N. (2009). Charles Darwin and the geographers. Environment and Planning A 41, 2293–2298. §

Cox, C. B. and Moore, P. D. (2010). Biogeography: An ecological and evolutionary approach. 8th ed. Hoboken, NJ: John Wiley & Sons.

Elhaik, E., Tatarinova, T., Chebotarev, D. et al. (2014). Geographic population structure analysis of worldwide human populations infers their biogeographical origins. Nature Communications DOI: 10.1038/ncomms4513.

Fuentes, A., Marks, J., Ingold, T. et al. (2010). On nature and the human. American Anthropologist 112, 512–521.

Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology 78, 1360–1380. §

Harcourt, A. H. (2012). Human biogeography. Berkeley: University of California Press. §

Hart, J. P. (2012). Why we are what and where we are. Science 338, 330.

Hellenthal, G., Busby, G. B. J., Band, G. et al. (2014). A genetic atlas of human admixture history. Science 343, 747–751.

Kelly, K. M.  (2002). Population. In Hart, J. P. & Terrell, J. E. (eds.) Darwin and archaeology: A handbook of key concepts, pp 243–256. Westport, Ct: Bergin & Garvey. §

Kivelä, M., Arnaud-Haond, S. and Saramäki, J. (2015).  EDENetworks: A user-friendly software to build and analyse networks in biogeography, ecology and population genetics. Molecular Ecology Resources 15, 117–122.

Koelsch, W. A. (2004). Franz Boas, geographer, and the problem of disciplinary identity. Journal of the History of the Behavioral Sciences 40, 1–22.

Kolata, G. B. (1974). Human biogeography: Similarities between man and beast. Science 185, 134–135.

Laland, K. N. and O’Brien, M. J. (2011). Cultural niche construction: An introduction. Biological Theory 6, 191–202.

Lao, O., Lu, T. T., Nothnagel, M. et al. (2008). Correlation between genetic and geographic structure in Europe. Current Biology 18, 1241–1248.

Lesser, A. (1961). Social fields and the evolution of society. Southwestern Journal of Anthropology 17, 40-48. §

Lewis, H. S. (2008). Franz Boas: Boon or bane? Reviews in Anthropology 37, 169–200.

Odling-Smee, F. J., Laland, K. N. and Feldman, M. W. (2003). Niche construction. Princeton: Princeton University Press.

Radil, S. M., Flint, C. and Tita, G. E. (2010). Spatializing social networks: Using social network analysis to investigate geographies of gang rivalry, territoriality, and violence in Los Angeles. Annals of the Association of American Geographers 100, 307–326. §

Simon, H. A. (1973). The organization of complex systems. In Pattee, H. H. (ed.) Hierarchy theory: The challenge of complex systems, pp 1–27. New York: George Braziller.

Stocking, G. W., Jr (1987). Victorian anthropology. New York: Free Press.

Terrell, J. E. (1977a). Biology, biogeography and man. World Archaeology 8, 237–248.

Terrell, J. E. (1977b). Geographic systems and human diversity in the North Solomons. World Archaeology 9, 62–81.

Terrell, J. E. (1977c). Human biogeography in the Solomon Islands. Fieldiana: Anthropology 68, 1–47.

Terrell J. E. (2006). Human biogeography: Evidence of our place in nature. Journal of Biogeography 33, 2088–2098. §

Terrell, J. E. (2010a). Language and material culture on the Sepik coast of Papua New Guinea: Using social network analysis to simulate, graph, identify, and analyze social and cultural boundaries between communities. Journal of Island and Coastal Archaeology 5, 3–32.

Terrell, J. E. (2010b). Social network analysis of the genetic structure of Pacific Islanders. Annals of Human Genetics 74, 211–232. §

Terrell, J. E. (2014). A talent for friendship: Rediscovery of a remarkable trait. Oxford: Oxford University Press. §

Verdon, M. (2006). The world upside down: Boas, history, evolutionism, and science. History and Anthropology 17, 171–187.

Verdon, M. (2007). Franz Boas: Cultural history for the present, or obsolete natural history? Journal of the Royal Anthropological Institute (N.S.) 13, 433–451.

Vincent, J. (2009). Ahead of his time? Production and reception in the work of Alexander Lesser. American Ethnologist 15, 743–751.

Wade, N. (2014). A troublesome inheritance: Genes, race and human history. New York: Penguin Press.

Watson, J. B. (1990). Other people do other things: Lamarckian identities in Kainantu subdistrict, Papua New Guinea. In Linnekin, J. & Poyer, L. (eds.) Cultural identity and ethnicity in the Pacific, pp 17–41. Honolulu: University of Hawai‘i Press.

Wilson, E. O. (1978). On human nature. Cambridge, MA: Harvard University Press.

Wilson, E. O. (2012). The social conquest of the earth. New York: Liveright (a division of W. W. Norton).

© 2015 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.

Human biogeography 1. Historical rivals

John Edward Terrell


Please note: this commentary, recovered on 15-Jan-2017, was originally published in Science Dialogues on 28-Jan-2015.


Abstract – Human biogeography is not a thriving scientific enterprise. Why? In part because our species is remarkably talented at niche construction and highly inventive at adapting our socially learned ways of making a living and staying alive to meet the challenges and opportunities around us wherever we find ourselves on the planet. Nonetheless there is political as well as scientific need in the 21st century for an inclusive biogeographical perspective on human diversity recognizing that we are a globally distributed species whose diversity is framed by isolation-by-distance constrained by our social, economic, and political networks, and whose impact on the environment and our own sustainability is substantial and critically in need of informed restructuring.

This is part 1 or a 3 part series at SCIENCE DIALOGUES


THERE OUGHT TO BE A NICHE in the economy of evolutionary biology for a research specialization called human biogeography, but use any search engine you favor and these two words as your key terms. You will find that while human geography has existed long enough to give rise to many sub-specializations (Castree 2009), human biogeography does not exist as a thriving scholarly enterprise, has given rise to no subfields, and is rarely noted as a possible contender for competitive research funding. Why? There are several reasons for this apparent truancy in the academic arena as well as an important lesson to be drawn for evolutionary biology.

Historical rivals

While the roots of modern species biogeography date back into the 18th century and before (Cox and Moore 2010), it has been conventional in Euro-American circles to treat human beings as apart from and even above the natural world (e.g., accounts of Creation in the Hebrew Bible and the Christian Old Testament). Perhaps for this reason, diverse research specializations such as ethnology, anthropology, archaeology, sociology, geography, physical anthropology, and the like took hold in the 19th century and early lay claim to much, if not all, of that century’s growing information about our own species diversity in its several dimensions—biological, cultural, social, ecological, economic, and linguistic (Stocking 1987). It seems possible—although perhaps difficult to prove—that seeing global human biodiversity as comparable in interesting ways to the diversity, relative abundance, and spatiotemporal distributions of other life forms has generally not been deemed appropriate or worthy. Alternatively, it might be argued that human biogeography was being practiced at least in the 19th century, but under the labeling physical geography, anthropogeography, or Erdkunde (Koelsch 2004). Whatever the explanation, other sciences have largely preempted the stage when the biogeography of human diversity is given serious attention.

Nature and nurture

Human biogeography has not been successful at establishing itself in the academic arena and marketplace in part also because it became increasingly apparent during the 19th century that our species is remarkably talented—to use today’s terminology—at environmental niche construction (Odling-Smee et al. 2003) as well as strikingly inventive at adapting our socially learned (i.e., “cultural”) ways of making a living and staying alive to meet the challenges as well as the prospective opportunities around us wherever we have found ourselves on the planet (Laland and O’Brien 2011). Hence centering research exclusively on the biological, epidemiological, and ecological side of being human might be asking us to overlook many and possibly most of the probable reasons accounting for our presence and impacts on local and regional environments as well as the global biosphere.

Folk human biogeography

Despite the growing sophistication during the 19th century of scientific ways of studying and interpreting human diversity in its many dimensions, older commonsensical ways of understanding our global variation as a species continued to hold sway in the public arena (Lewis 2008). Many of these old ideas survived the 20th century (Caspari 2003) and remain popular today. Two notions, in particular, are often voiced although there is by now more than sufficient evidence to the contrary. The first is the belief that we are an inherently tribal species. The second is the conviction that we are by nature untrustworthy, self-centered, and prone to violence.

The anthropologist Gustaf Retzius at work between circa 1870 and 1890. Source: http://commons.wikimedia.org/wiki/File:Antropologen_Gustaf_Retzius_i_f%C3%A4rd_med_att_m%C3%A4ta_h%C3%A4rjedalssamen_Fjellstedts_huvud_-_Nordiska_Museet_-_NMA.0052720.jpg PD-1923

For example, Nicholas Wade recently insisted that after we began leaving Africa around 50,000 years ago and started colonizing the rest of the world, we subsequently evolved in isolation on each of the earth’s major continents into biologically distinct races, which both popular wisdom and Wade say are three or so in number (Africans, Asians, and Caucasians) because “human evolution has been recent, copious and regional” and these dispersing human pioneers broke up into small tribal groups as they spread out across the globe. “The mixing of genes between these little populations was probably very limited. Even if geography had not been a formidable barrier, the hunter-gatherer groups were territorial and mostly hostile to strangers” (Wade 2014: 78).

Such interpretations may be appealing in their simplicity, but they are more in keeping with folk wisdom than with available research findings.

Acknowledgments

I thank Eric Clark, Mark Golitko, John Hart, and Kevin Kelly for comments on the working draft.

References      § = suggested further reading

Banks, W. E. (2013). Review of Harcourt, Human biogeography. Quarterly Review of Biology 88, 39–40.

Barth, F. (1969). Introduction. In Barth, F. (ed.) Ethnic groups and boundaries: The social organization of culture difference, pp 9–38. Boston, MA: Little, Brown and Company.

Bashkow, I. (2004). A neo-Boasian conception of cultural boundaries. American Anthropologist 106, 443–458.

Caspari, R. (2003). From types to populations: A century of race, physical anthropology, and the American Anthropological Association. American Anthropologist 105, 65–76.

Castree, N. (2009). Charles Darwin and the geographers. Environment and Planning A 41, 2293–2298. §

Cox, C. B. and Moore, P. D. (2010). Biogeography: An ecological and evolutionary approach. 8th ed. Hoboken, NJ: John Wiley & Sons.

Elhaik, E., Tatarinova, T., Chebotarev, D. et al. (2014). Geographic population structure analysis of worldwide human populations infers their biogeographical origins. Nature Communications DOI: 10.1038/ncomms4513.

Fuentes, A., Marks, J., Ingold, T. et al. (2010). On nature and the human. American Anthropologist 112, 512–521.

Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology 78, 1360–1380. §

Harcourt, A. H. (2012). Human biogeography. Berkeley: University of California Press. §

Hart, J. P. (2012). Why we are what and where we are. Science 338, 330.

Hellenthal, G., Busby, G. B. J., Band, G. et al. (2014). A genetic atlas of human admixture history. Science 343, 747–751.

Kelly, K. M.  (2002). Population. In Hart, J. P. & Terrell, J. E. (eds.) Darwin and archaeology: A handbook of key concepts, pp 243–256. Westport, Ct: Bergin & Garvey. §

Kivelä, M., Arnaud-Haond, S. and Saramäki, J. (2015).  EDENetworks: A user-friendly software to build and analyse networks in biogeography, ecology and population genetics. Molecular Ecology Resources 15, 117–122.

Koelsch, W. A. (2004). Franz Boas, geographer, and the problem of disciplinary identity. Journal of the History of the Behavioral Sciences 40, 1–22.

Kolata, G. B. (1974). Human biogeography: Similarities between man and beast. Science 185, 134–135.

Laland, K. N. and O’Brien, M. J. (2011). Cultural niche construction: An introduction. Biological Theory 6, 191–202.

Lao, O., Lu, T. T., Nothnagel, M. et al. (2008). Correlation between genetic and geographic structure in Europe. Current Biology 18, 1241–1248.

Lesser, A. (1961). Social fields and the evolution of society. Southwestern Journal of Anthropology 17, 40-48. §

Lewis, H. S. (2008). Franz Boas: Boon or bane? Reviews in Anthropology 37, 169–200.

Odling-Smee, F. J., Laland, K. N. and Feldman, M. W. (2003). Niche construction. Princeton: Princeton University Press.

Radil, S. M., Flint, C. and Tita, G. E. (2010). Spatializing social networks: Using social network analysis to investigate geographies of gang rivalry, territoriality, and violence in Los Angeles. Annals of the Association of American Geographers 100, 307–326. §

Simon, H. A. (1973). The organization of complex systems. In Pattee, H. H. (ed.) Hierarchy theory: The challenge of complex systems, pp 1–27. New York: George Braziller.

Stocking, G. W., Jr (1987). Victorian anthropology. New York: Free Press.

Terrell, J. E. (1977a). Biology, biogeography and man. World Archaeology 8, 237–248.

Terrell, J. E. (1977b). Geographic systems and human diversity in the North Solomons. World Archaeology 9, 62–81.

Terrell, J. E. (1977c). Human biogeography in the Solomon Islands. Fieldiana: Anthropology 68, 1–47.

Terrell J. E. (2006). Human biogeography: Evidence of our place in nature. Journal of Biogeography 33, 2088–2098. §

Terrell, J. E. (2010a). Language and material culture on the Sepik coast of Papua New Guinea: Using social network analysis to simulate, graph, identify, and analyze social and cultural boundaries between communities. Journal of Island and Coastal Archaeology 5, 3–32.

Terrell, J. E. (2010b). Social network analysis of the genetic structure of Pacific Islanders. Annals of Human Genetics 74, 211–232. §

Terrell, J. E. (2014). A talent for friendship: Rediscovery of a remarkable trait. Oxford: Oxford University Press. §

Verdon, M. (2006). The world upside down: Boas, history, evolutionism, and science. History and Anthropology 17, 171–187.

Verdon, M. (2007). Franz Boas: Cultural history for the present, or obsolete natural history? Journal of the Royal Anthropological Institute (N.S.) 13, 433–451.

Vincent, J. (2009). Ahead of his time? Production and reception in the work of Alexander Lesser. American Ethnologist 15, 743–751.

Wade, N. (2014). A troublesome inheritance: Genes, race and human history. New York: Penguin Press.

Watson, J. B. (1990). Other people do other things: Lamarckian identities in Kainantu subdistrict, Papua New Guinea. In Linnekin, J. & Poyer, L. (eds.) Cultural identity and ethnicity in the Pacific, pp 17–41. Honolulu: University of Hawai‘i Press.

Wilson, E. O. (1978). On human nature. Cambridge, MA: Harvard University Press.

Wilson, E. O. (2012). The social conquest of the earth. New York: Liveright (a division of W. W. Norton).

© 2015 John Edward Terrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The statements and opinions expressed are those of the author(s) and do not constitute official statements or positions of the Editors and others associated with SCIENCE DIALOGUES.